Exposés à venir
Estimations explicites pour les sommes de fonctions arithmétiques, ou l'utilisation optimale de l'information spectrale finie sur les séries de Dirichlet
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Harald Helfgott (CNRS, IMJ) Résumé :Soit $F(s) = \sum_n a_n n^{-s}$ une série de Dirichlet. Supposons que l’on dispose d’un prolongement analytique de $F(s)$, ainsi que d’informations sur les pôles de $F(s)$ pour $|\Im s|\leq T$, où $T$ est une grande constante. Quelle est la meilleure manière d’exploiter ces données pour obtenir des estimations explicites des sommes $\sum_{n\leq x} a_n$?
Le cas de la fonction de Mertens $M(x) = \sum_{n\leq x} \mu(n)$ illustre à quel point cette question de base est restée ouverte. Il serait naturel de penser que borner $M(x)$ revient essentiellement à estimer $\psi(x) = \sum_{n\leq x} \Lambda(n)$. Pourtant, des bornes explicites assez satisfaisantes pour $\psi(x)-x$ sont connues depuis longtemps, alors que l’obtention de bonnes bornes pour $M(x)$ était un problème notoirement récalcitrant.
Nous donnons une méthode optimale pour utiliser l’information spectrale sur les pôles de $F(s)$ avec $|\Im s|\leq T$. Elle permet en particulier d’obtenir des bornes sur la fonction de Mertens nettement plus fortes que celles de la littérature, ainsi qu’une amélioration substantielle des estimations de ψ(x) pour des valeurs modérées de x.
Nous utilisons des fonctions de type « Beurling–Selberg » : plus précisément, un approximant optimal dû à Carneiro–Littmann, ainsi qu’un majorant/minorant optionnel dû à Graham–Vaaler. Notre procédure présente des points de contact avec le théorème de Wiener–Ikehara ainsi qu’avec des travaux de Ramana et Ramaré, mais ne dépend d’aucun résultat de la littérature classique sur les estimations explicites en théorie analytique des nombres.
Fréquences de lettres dans des suites auto-descriptives
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Mai Linh Tran-Cong Résumé :La suite d’Oldenburger-Kolakoski est l’unique mot infini sur l’alphabet {1,2} qui commence par un « 1 » et est point fixe de l’opérateur de dérivation. En 1991, M.S. Keane conjecture que cette suite admet une fréquence d’1/2 pour la lettre « 1 ».
Les suites dites « auto-descriptives » sont une généralisation du mot d’Oldenburger-Kolakoski. Ces suites sont en bijection naturelle avec l’ensemble de toutes les suites sur l’alphabet {1,2} : une suite auto-descriptive est dite « dirigée » par son homologue naturelle sur {1,2}. Est-il possible d’inférer les fréquences de lettres de l’une à partir de l’autre ?
Je présenterai dans cet exposé deux approches à cette question : l’une probabiliste (Boisson, Jamet, Marcovici — 2024), l’autre analytique (Akiyama, Jamet, Marcovici, T.C. — 2024).
Towards an asymptotic equivalence of Patterson–Sullivan and Wigner distributions for hyperbolic surfaces
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Guendalina Palmirotta (Paderborn) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 janvier 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cedric Pilatte (Oxford) Résumé :Antonio Lopez-Neumann (titre à venir)
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 janvier 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antonio Lopez-Neumann (Jussieu) Résumé :Miquel Cueca Ten (titre à venir)
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Miquel Cueca Ten (KU Leuven) Résumé :Jan Pulmann — titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 février 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jan Pulmann (Charles University) Résumé :Job Kuit — titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 février 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Job Kuit (Paderborn) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 février 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Maud Szusterman (Ecole Polytechnique) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :Effie Papageorgiou (titre à venir)
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 mars 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Effie Papageorgiou Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Emma Weschler (Lille) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :Archives
Connes-Kasparov via the Casselman algebra and the Paley-Wiener theorem
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 10 octobre 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jacob Bradd Résumé :I will talk about a refinement of the Connes-Kasparov isomorphism, which is proved by understanding the structure of the Casselman algebra of rapidly decreasing functions on a real reductive group. I show that this Casselman algebra, which encodes nonunitary representation theory, and the reduced group C^*-algebra, which encodes tempered unitary representation theory, are built in very similar ways from similar elementary components. The structure of the Casselman algebra is understood using techniques from Delorme’s proof of the Paley-Wiener theorem for real reductive groups, which describes the Fourier transform of compactly supported smooth functions. Thanks to the similar structures of the two algebras, it becomes straightforward to prove that the two algebras, once cut down to certain finite sets of K-types, have isomorphic K-theory, which is the refinement of Connes-Kasparov. This work is essentially my thesis at Penn State.
Gaussian behaviour of small quadratic non-residues
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 septembre 2024 15:45-16:45 Lieu : Salle Döblin Oratrice ou orateur : Kunjakanan Nath (Université de Lorraine) Résumé :In this talk, we will discuss the Gaussian behaviour of small quadratic non-residues for almost all primes in short intervals. We will begin with some background on quadratic non-residues and then briefly outline the proof. The proof uses the method of moments in conjunction with sieve methods and algebraic inputs from counting solutions of polynomial equations. This is joint work with Debmalya Basak and Alexandru Zaharescu.
Reduction of (multi)-symplectic observables
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 20 juin 2024 13:30-14:30 Lieu : Salle de séminaires Metz Oratrice ou orateur : Leonid Ryvkin (Lyon I) Résumé :Let $M$ be a manifold with a geometric structure and sufficiently nice $G$ a symmetry group, often the geometric structure can be transferred to $M/G$. In (multi-)symplectic geometry, reduction procedures permit to transfer the differential form to an even smaller space. However, all approaches working directly on the space have very strong regularity requirements.
We present an approach to reducing the algebra of (multi-)symplectic observables for general (covariant) moment maps, without any regularity assumptions of the level sets (and the symmetries).
Based on joint work with Casey Blacker and Antonio Miti.
Equivariant quantizations of the positive nilradical and covariant differential calculi
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 juin 2024 15:45-16:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Marco Matassa (Oslo Met) Résumé :We consider the problem of quantizing the positive nilradical of a complex semisimple Lie algebra of finite rank, together with a certain fixed direct sum decomposition. The decompositions we consider are in one-to-one correspondence with total orders on the simple roots, and exhibit the nilradical as a direct sum of graded modules for appropriate Levi factors. We show that this situation can be quantized equivariantly as a finite-dimensional subspace within the positive part of the corresponding quantized enveloping algebra. Furthermore, we show that such subspaces give rise to left coideals, with the possible exception of components corresponding to some exceptional Lie algebras, and this property singles them out uniquely. Finally, we discuss how to use these quantizations to construct covariant first-order differential calculi on quantum flag manifolds, which coincide with those introduced by Heckenberger-Kolb in the irreducible case.
La distribution des dérivées logarithmiques des fonctions L quadratiques en caractéristique positive
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 13 juin 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Félix Baril Boudreau (Université du Luxembourg) Résumé :À chaque polynôme unitaire sans facteur carré $D$ d’un anneau de polynômes $\mathbb{F}_q[t]$ nous pouvons associer un caractère réel quadratique $\chi_D$ et puis une fonction L de Dirichlet $L(s,\chi_D)$. Inspirés par l’article de Y. Lamzouri sur les constantes d’Euler-Kronecker d’extensions quadratiques de corps de nombres, nous étudions la famille des valeurs $-L'(1,\chi_D)/L(1,\chi_D)$ lorsque $D$ parcourt l’ensemble des polynômes unitaires sans facteur carré de $\mathbb{F}_q[t]$. Tout d’abord, nous calculons uniformément leurs moments entiers sur un intervalle particulier. Puis, en utilisant un modèle aléatoire, nous montrons que les valeurs $-L'(1,\chi_D)/L(1,\chi_D)$ possèdent une distribution limite lorsque le degré de $D$ tend vers l’infini, où la fonction de distribution admet une fonction de densité lisse. Nous prouvons également un théorème de discrépance pour la convergence des fréquences des valeurs $-L'(1,\chi_D)/L(1,\chi_D)$ vers cette fonction de distribution. Notre théorème de discrépance fournit de l’information non négligeable à propos des petites valeurs de $-L'(1,\chi_D)/L(1,\chi_D)$. Nous déduisons aussi des résultats analogues pour les constantes d’Euler-Kronecker d’extensions quadratiques. Il s’agit d’un travail en collaboration avec Amir Akbary (University of Lethbridge).
On the twisted Ruelle zeta function and the Ray-Singer metric
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 juin 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Polyxeni Spilioti (Göttingen) Résumé :Dirac cohomology and $\Theta$-correspondence for complex dual pairs
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 juin 2024 14:15-15:15 Lieu : Oratrice ou orateur : Spyridon Afentoulidis-Almpanis (Bar-Ilan University, Israel) Résumé :(Joint work with G. Liu and S. Mehdi)
For the last decades, representation theory of Lie groups and algebras has been a very active research topic with a multitude of ramifications and applications. Since the work, in the 1970’s, of Parthasarathy and Atiyah-Schmid, Dirac operators have become efficient tools to describe and classify the unitary dual of a real Lie a group $G$. On the one hand, any irreducible unitary representation occurring in the regular representation $L^2(G)$ can be realized as the Hilbert space of $L^2$-sections, of some twist of the spin bundle over the Riemannian symmetric space $G/K$, which belong to the kernel of the associated Dirac operator. Here $K$ is a maximal compact subgroup of $G$. On the other hand, Dirac cohomology, introduced by Vogan in the late 1990’s, defines an invariant which can be used to detect the infinitesimal character of representations (theorem of Huang and Pandzic). Therefore it is important to study the behavior of the Dirac cohomology under functors involved in representation theory.
A useful functor in representation theory of reductive groups is the so-called $\Theta$-correspondence (or the Howe duality). Howe duality relates representations and characters of two Lie groups $G_1$ and $G_2$, viewed as closed subgroups of the metaplectic group $M$ such that $Z_M(G_1) = G_2$ and $Z_M(G_2) = G_1$.
In this talk, we will study the behavior of the Dirac cohomology under the $\Theta$-correspondence in the case of complex
pairs $(G_1, G_2)$ viewed as real Lie groups.
The automorphism group of a field of generalised formal power series
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 30 mai 2024 15:45-16:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Salma Kuhlmann (Universität Konstanz) Résumé :(Joint Work with Michele Serra.)
In his paper » Automorphisms of fields of formal power series » (Bull. Am. Math. Soc. 50, 1944) Otto Schilling described the automorphism group of k((t)), the field of Laurent series with coefficients in a ground field k and exponents in the group of integers. In our paper « The automorphism group of a valued field of generalised formal power series » (J. Algebra 605, 2022) we generalise his results to the case when the exponents lie in an arbitrary abelian group. In particular, our results apply to a variety of such fields, e.g. to the field of Puiseux series, of multivariate rational functions, of multivariate Laurent series, or to the field of surreal numbers.
The talk will be self contained talk and geared towards a general audience.
Les nombres surréels de John Horton Conway et l'univers de John Von Neumann
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 30 mai 2024 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Wolfgang Bertram (IÉCL) Résumé :Je proposerai une excursion aux « Fondements mathématiques » (dans le sens de l’intitulé d’une unité de notre L1 que j’étais amené à enseigner à Nancy pendant ces dernières années) : depuis le 19e siècle, la théorie des fondements des nombres et de l’analyse réels, et celle de la théorie des ensembles, se sont nourries mutuellement (Dedekind, Cantor,…). Au 20e siècle, cette interaction a pris un nouveau tournant : du coté théorie des ensembles, l’univers de von Neumann permet de sortir indemne de la « crise des fondements » ; du coté de la théorie des nombres, John Horton Conway proposa, dans son livre « On Numbers and Games » (connu sous le sigle ONAG), une nouvelle approche qui permet de voir les nombres réels dans un cadre beaucoup plus vaste de « tous les nombres » (« All Numbers Great and Small »). Le terme « nombres surréels », crée par Donald Knuth dans son livre Surreal numbers – how two ex-students turned on to pure mathematics and found total happiness (qui est paru même avant ONAG), est un peu malheureux car il suggère une analogie avec le courant d’art de même nom, ce qui est trompeur. Dans cet exposé, je tenterai de vous expliquer que ces nombres sont aussi réels que tout objet mathématique vivant dans l’univers mathématique, et pour lequel l’univers de von Neumann fournit un modèle. Il s’agit d’un travail en cours, loin d’être terminé.
Corps de décomposition de $X^n-X-1$ et formes modulaires
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 16 mai 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Gabor Wiese (Université du Luxembourg) Résumé :Dans son article `On a theorem of Jordan’, Serre considère la famille de polynômes $f_n(X) = X^n-X-1$ et la fonction qui compte le nombre de racines de $f_n$ dans le corps fini $F_p$ en tant que fonction de $p$. Il montre explicitement la ‘modularité’ de cette fonction pour $n=3,4$. Dans cet exposé, je parlerai d’un article en commun avec Alfio Fabio La Rosa et Chandrashekhar Khare dans lequel nous traitons le cas $n=5$ de plusieurs manières.