Séminaires

Exposés à venir

Estimations explicites pour les sommes de fonctions arithmétiques, ou l'utilisation optimale de l'information spectrale finie sur les séries de Dirichlet

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Harald Helfgott (CNRS, IMJ) Résumé :
Travail en collaboration avec A. Chirre.

Soit $F(s) = \sum_n a_n n^{-s}$ une série de Dirichlet. Supposons que l’on dispose d’un prolongement analytique de $F(s)$, ainsi que d’informations sur les pôles de $F(s)$ pour $|\Im s|\leq T$, où $T$ est une grande constante. Quelle est la meilleure manière d’exploiter ces données pour obtenir des estimations explicites des sommes $\sum_{n\leq x} a_n$?

Le cas de la fonction de Mertens $M(x) = \sum_{n\leq x} \mu(n)$ illustre à quel point cette question de base est restée ouverte. Il serait naturel de penser que borner $M(x)$ revient essentiellement à estimer $\psi(x) = \sum_{n\leq x} \Lambda(n)$. Pourtant, des bornes explicites assez satisfaisantes pour $\psi(x)-x$ sont connues depuis longtemps, alors que l’obtention de bonnes bornes pour $M(x)$ était un problème notoirement récalcitrant.

Nous donnons une méthode optimale pour utiliser l’information spectrale sur les pôles de $F(s)$ avec $|\Im s|\leq T$. Elle permet en particulier d’obtenir des bornes sur la fonction de Mertens nettement plus fortes que celles de la littérature, ainsi qu’une amélioration substantielle des estimations de pour des valeurs modérées de .

Nous utilisons des fonctions de type « Beurling–Selberg » : plus précisément, un approximant optimal dû à Carneiro–Littmann, ainsi qu’un majorant/minorant optionnel dû à Graham–Vaaler. Notre procédure présente des points de contact avec le théorème de Wiener–Ikehara ainsi qu’avec des travaux de Ramana et Ramaré, mais ne dépend d’aucun résultat de la littérature classique sur les estimations explicites en théorie analytique des nombres.

 


Fréquences de lettres dans des suites auto-descriptives

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Mai Linh Tran-Cong Résumé :

La suite d’Oldenburger-Kolakoski est l’unique mot infini sur l’alphabet {1,2} qui commence par un « 1 » et est point fixe de l’opérateur de dérivation. En 1991, M.S. Keane conjecture que cette suite admet une fréquence d’1/2 pour la lettre « 1 ».

Les suites dites « auto-descriptives » sont une généralisation du mot d’Oldenburger-Kolakoski. Ces suites sont en bijection naturelle avec l’ensemble de toutes les suites sur l’alphabet {1,2} : une suite auto-descriptive est dite « dirigée » par son homologue naturelle sur {1,2}. Est-il possible d’inférer les fréquences de lettres de l’une à partir de l’autre ?

Je présenterai dans cet exposé deux approches à cette question : l’une probabiliste (Boisson, Jamet, Marcovici — 2024), l’autre analytique (Akiyama, Jamet, Marcovici, T.C. — 2024).


Towards an asymptotic equivalence of Patterson–Sullivan and Wigner distributions for hyperbolic surfaces

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Guendalina Palmirotta (Paderborn) Résumé :
There is a curious relation between two kinds of phase space distributions associated to eigenfunctions of the Laplacian on a hyperbolic surface: Patterson-Sullivan distributions, which are invariant under the geodesic flow, and Wigner distributions, which arise in quantum chaos and are invariant under the wave group.
In this talk, we will describe these two distributions and generalise them on convex-cocompact hyperbolic surfaces. Then, we will show how they are asymptotically intertwined.
This is a joint work with Benjamin Delarue (Universität Paderborn).

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 janvier 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cedric Pilatte (Oxford) Résumé :

Antonio Lopez-Neumann (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 janvier 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antonio Lopez-Neumann (Jussieu) Résumé :

Miquel Cueca Ten (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Miquel Cueca Ten (KU Leuven) Résumé :

Jan Pulmann — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 février 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jan Pulmann (Charles University) Résumé :

Job Kuit — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 février 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Job Kuit (Paderborn) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 février 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Maud Szusterman (Ecole Polytechnique) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :

Effie Papageorgiou (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 mars 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Effie Papageorgiou Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Emma Weschler (Lille) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :

Archives

Décomposabilité géométrique pour les groupoïdes

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 octobre 2023 15:45-16:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Hervé Oyono-Oyono (IÉCL) Résumé :

La décomposabilité géométrique  pour un groupoïde peut-être vue comme une forme d’implémentation de la technique de « cut-and-pasting » utilisée par G. Yu dans sa preuve de la conjecture de Novikov pour les groupes de dimension  asymptotique finie.

Dans cet exposé, nous introduirons tout d’abord ce concept de décomposabilité, puis nous établirons le lien avec la dimension asymptotique et plus généralement avec la notion de décomposabilité  à complexité finie pour un espace métrique. Nous donnerons des applications à la moyennabilité des groupoïdes (en particulier à celle des actions de groupes). Si le temps nous le permet nous discuterons d’applications à la calculabilité en K-théorie (en particulier à la conjecture de Baum-Connes).


Quantum Permutations and Quantum Symmetries

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 octobre 2023 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Moritz Weber (Saarbrücken) Résumé :

In the past decades a kind of « quantum mathematics » has evolved as a more and more coherent theory. It contains, amongst others, C*-algebras (aka noncommutative topology), von Neumann algebras (aka noncommutative measure theory), Connes’s noncommutative (differential) geometry, Voiculescu’s free probability theory and many more. In this mostly analytic setting, Woronowicz’s quantum groups provide a suitable notion of quantum symmetry.
In this talk, we will give a pedestrian approach to quantum symmetries: We will introduce quantum permutations purely in the language of linear algebra and sketch its use in graph theory (see for instance an exciting extension of Lovasz’ homomorphism counts theorem from the 1960s). On the way, we will briefly mention the broader context of quantum mathematics, quantum groups and some links to quantum information theory. We will try to keep the talk quite algebraic and combinatorial and we will avoid too many details from analysis.


Lagrange spectrum in ordered shift spaces

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 octobre 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Hajime Kaneko (Université de Tsukuba) Résumé :

Lagrange spectrum is related to the rational approximations of badly approximable numbers. The discrete part of the spectrum is denoted in terms of Christoffel words. Multiplicative analogy of Lagrange spectrum was recently investigated, which is defined by rational approximations of geometric sequences and more general linear recurrence. Dubickas essentially found the relation of the discrete part of the multiplicative Lagrange spectrum and the limit sup words on the shift spaces with alternate order. Liao and Steiner found that such words are also related to the negative beta expansions. On this talk, we shall investigate limit sup words on more general ordered shift spaces. Such words are related to generalized beta expansion.

This is a joint work with Wolfgang Steiner.


Réunion d'équipe

Catégorie d’évènement : Analyse et théorie des nombres Date/heure : 5 octobre 2023 14:30-15:30 Lieu : Oratrice ou orateur : Résumé :

Sur les déformations des groupes de Lie semisimples

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 septembre 2023 02:15-03:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Bob Yuncken Résumé :

Un groupe de Lie semisimple G peut être placé dans une famille de déformations qui aboutit dans le groupe de mouvements de Cartan.  Cette idée provient de Mackey avec clarification par Higson et Afgoustidis.  Si G est complexe, sa structure de Poisson-Lie permet une famille de déformations de $G$ dans des groupes quantiques découverts par Drinfeld, Woronowicz et d’autres.  Les deux déformations sont réunis dans des travaux de Monk & Voigt.  Dans cet exposé, j’essayerai de dessiner cette famille de déformations à 2 paramètres ainsi que ses duaux réduites.  Rien ne sera original.  Si le temps et l’enthousiasme le permet, j’ajouterai quelques réflexions speculatives sur le cas réel.


Strichartz's conjecture for Poisson transforms and generalized spectral projections on spinors

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 septembre 2023 15:45-16:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Khalid Koufany Résumé :

We consider the real hyperbolic space $H^n(R)$ as the symmetric space $\operatorname{Spin}_0(1, n) / \operatorname{Spin}(n)$.
We prove that the Poisson transform is an isomorphism between the space of $L^2$-spinors on the unit sphere $S^{n-1}$ and a certain weighted $L^2$-space consisting of joint eigenspinors on $H^n(R)$. For this purpose, we prove a Fourier restriction estimate and an asymptotic formula for the Poisson transform.
As a consequence we prove a characterization for the generalized spectral projections.
This is a joint work with A. Boussejra.


Problème de cible rétrécissante simultanée des systèmes dynamiques x2 et x3

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 21 septembre 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Lingmin Liao Résumé :

Nous étudions la taille des ensembles de points dans l’intervalle unitaire dont les orbites sous les systèmes dynamiques x2 et x3 tombent simultanément dans une famille donnée de boules rétrécissantes (cibles rétrécissantes). Une loi zéro-un pour la mesure de Lebesgue de tels ensembles est établie. La formule des dimensions de Hausdorff est également obtenue lorsque les rayons des boules diminuent de façon exponentielle. Nous soulignons qu’une partie de la formule dimensionnelle est établie en admettant la fameuse conjecture abc. Il s’agit d’un travail en collaboration avec Bing Li, Sanju Velani et Evgeniy Zorin.


Toeplitz operators on quotient domains

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 septembre 2023 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : E. K. Narayanan (Indian Institute of Science) Résumé :

Let $G$ be a finite pseudo-reflection group and $\Omega$ be a bounded domain in $\mathbb C^d$ which is $G$-invariant. The quotient domain $\Omega/G,$ is biholomorphically equivalent to a domain ${{\boldsymbol \theta}} (\Omega)$ where ${{\boldsymbol \theta}} : \Omega \to {{\boldsymbol \theta}}(\Omega)$ is a basic polynomial map. Prominent example of a quotient domain is the symmetrized polydisc $\mathbb G_d$ in $\mathbb C^d.$ In this case, the basic polynomial map is given by $z \to (s_1(z), s_2(z), \cdots s_d(z))$ from $\mathbb D^d$ (unit polydisc in $\mathbb C^d$) to $\mathbb G_d$ where $s_j(z)$ is the $j$-th elementary symmetric polynomial. We study properties of Toeplitz operators on weighted Bergman spaces on ${{\boldsymbol \theta}}(\Omega)$ by establishing a connection of them with Toeplitz operators on weighted Bergman spaces on $\Omega.$ Results on zero product problem and commuting pairs of Toeplitz operators will be explained. Representation theory of $G$ and projections to isotypic components play an important role in our results. (Joint work with Gargi Ghosh)


Suites BGG transverses

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 juin 2023 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Clément Cren (Créteil) Résumé :

Les suites de Bernstein-Gelfand-Gelfand trouvent leur origine en théorie des représentations des groupes de Lie semi-simples. Divers travaux leur ont ensuite donné une interprétation géométrique comme suite d’opérateurs différentiels sur certains espaces homogènes. Ce point de vue a permis à Čap, Slovák et Souček de les généraliser aux variétés possédant une géométrie parabolique au sens de Cartan. Ces variétés étant naturellement filtrées, des travaux récents de Dave et Haller ont montré que les suites d’opérateurs BGG satisfaisaient une certaine forme de la condition de Rockland (une extension de l’ellipticité pour les opérateurs pseudodifférentiels).

Dans cet exposé nous étendons la construction d’opérateurs de type BGG aux variétés feuilletés admettant une géométrie parabolique transverse. Nous définissons une condition de Rockland transverse adaptée à ces variétés et montrons que le complexe de de Rham tordu et les suites d’opérateurs BGG satisfont cette condition.


A proof of the Erdős primitive set conjecture

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 22 juin 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Jared Lichtman (University of Oxford) Résumé :

A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in the 1930s that the sum of 1/(a log a), ranging over a in A, is uniformly bounded over all choices of primitive sets A. In the 1980s he asked if this bound is attained for the set of prime numbers. In this talk we describe recent work which answers Erdős’ conjecture in the affirmative. We will also discuss applications to old questions of Erdős, Sárközy, and Szemerédi from the 1960s.


4 5 6 7 8 9 10 11 12 13 14 15