Exposés à venir
Caractérisation de formes binaires de même image.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 23 janvier 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Etienne Fouvry (Orsay) Résumé :Soit $F(X,Y)$ une forme binaire à coefficients entiers, de discriminant non nul, de degré $\geq 3$.
A quelle condition, nécessaire et suffisante, existe-t-il une forme $G (X,Y)$, non $GL(2, Z)$-équivalente à $F(X,Y)$, telle qu’on ait l’égalité des images $F(Z^2) = G(Z^2)$ ?
La condition trouvée repose sur l’existence d’un élément d’ordre $3$, d’un certain type, dans le groupe d’automorphismes de $F$.
Travail en commun avec Peter Koymans.
Pierre Bieliavksy -- titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 février 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :À venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 20 mars 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Seth Hardy (Warwick) Résumé :À venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 mai 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (Lille) Résumé :Archives
Quantum Permutations and Quantum Symmetries
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 16 février 2023 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Mortiz Weber (Saarbrücken) Résumé :In the past decades a kind of „quantum mathematics“ has evolved as a more and more coherent theory. It contains, amongst others, C*-algebras (aka noncommutative topology), von Neumann algebras (aka noncommutative measure theory), Connes’s noncommutative (differential) geometry, Voiculescu’s free probability theory and many more. In this mostly analytic setting, Woronowicz’s quantum groups provide a suitable notion of quantum symmetry.
In this talk, we will give a pedestrian approach to quantum symmetries: We will introduce quantum permutations purely in the language of linear algebra and sketch its use in graph theory (see for instance an exciting extension of Lovasz’ homomorphism counts theorem from the 1960s). On the way, we will briefly mention the broader context of quantum mathematics, quantum groups and some links to quantum information theory. We will try to keep the talk quite algebraic and combinatorial and we will avoid too many details from analysis.
Moyennes friables, un survol
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 9 février 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Gérald Tenenbaum (IECL) Résumé :L’exposé aura pour objectif de présenter une synthèse des méthodes et résultats relatifs aux moyennes friables de fonctions arithmétiques, principalement, mais non exclusivement, multiplicatives. Dans ce cadre, des résultats récents, obtenus en collaboration avec Régis de la Bretèche, sont relatifs à des fonctions oscillantes dont la série de Dirichlet est analytiquement proche d’une puissance réelle négative de la fonction zêta de Riemann. Des applications seront décrites.
Une nouvelle approche à l'homologie cyclique des produits croisés
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 2 février 2023 14:00-15:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Michael Puschnigg (Marseille) Résumé :Courses de polynômes irréductibles dans les corps de fonctions.
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 janvier 2023 14:30-15:30 Lieu : Oratrice ou orateur : Youssef Sedrati (IECL) Résumé :En 1853, Tchebychev a remarqué que, pour la plupart des réels $x\geq 2$, il y a une prédominance des nombres premiers $\leq x$ congrus à $3$ modulo $4$ par rapport aux nombres premiers $\leq x$ congrus à $1$ modulo $4$. Depuis, plusieurs généralisations de ce phénomène ont été étudiées, notamment dans le cas des courses de nombres premiers à plusieurs compétiteurs par Y. Lamzouri. Dans cette présentation, j’exposerai des résultats relatifs à la généralisation des travaux de Y. Lamzouri dans le contexte des anneaux de polynômes sur les corps finis. J’évoquerai également des résultats concernant les courses de polynômes irréductibles à 2 compétiteurs. En particulier, je donnerai des exemples de courses de polynômes irréductibles à 2 compétiteurs où les densités s’annulent.
Marius Mantoiu -- heure exceptionnelle
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 janvier 2023 13:45-14:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Marius Mantoiu (Santiago) Résumé :Construction d'un nombre normal en bases Pisot et fractions continues
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 janvier 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Renan Laureti (IECL) Résumé :Depuis leur introduction par Borel en 1909, les nombres normaux ont fait l’objet de nombreuses constructions diverses.
Si il n’existe aucune construction simple d’un nombre absolument normal, c’est à dire normal en toute base entière, différentes méthodes algorithmiques existent pour en générer.
Un grande partie du travail que j’ai effectué au cours de ma thèse a consisté en la fusion de deux algorithmes de construction de nombres normaux dans un plus grand ensemble de bases : le premier, par Madritsch, Scheerer et Tichy (2016) construit un nombre normal en toutes bases Pisot et le second, par Becher et Yujhtmann (2017) un nombre normal et toutes bases entières ainsi qu’en base fractions continues. Dans le cadre de cet exposé je présenterai le fonctionnement d’un algorithme de construction d’un nombre normal en bases Pisot et fractions continues, et traiterai de l’impact de la propagations de retenues en bases Pisot.
A new bound for A(A + A) for large sets
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 janvier 2023 14:30-15:30 Lieu : Oratrice ou orateur : Aliaksei Semchankau Résumé :We prove the following structural result, resembling the Arithmetical Regularity Lemma of B. Green, and Graph Container Theorem in hypergraphs:
Lemma: Let $A_1,A_2,\ldots,A_k\subset\mathbb{F}_p$ be such that $|A_i| \gg p$ for all $i$. Assume that $(A_1 * A_2 * \ldots * A_k)(a) = o(p^{k-1})$ for some $a \in \mathbb{F}_p$.
Then there exist sets $W_1, \ldots, W_k$, which we call wrappers, and sets $Y_1, \ldots, Y_k$, such that:
$(W_1 * W_2 * \ldots * W_k)(b) = o(p^{k-1})$ for some $b \in \mathbb{F}_p$ , $A_i \setminus Y_i \subseteq W_i$ and $|Y_i| = o(p)$ for all $i$, $|W_i|_{\omega} = p^{o(1)}$ for all $i$, where $|\cdot|_{\omega}$ is a Wiener norm.
As a consequence of wrappers having a small Wiener norm, we obtain the following results.
If $A(A+A)$ does not cover all nonzero residues in $\mathbb{F}_p$, then $|A| \leqslant p/8 + o(p)$.
If $A$ is both sum-free and satisfies $A = A^*$, then $|A| \leqslant p/9 + o(p)$.
If $|A| \gg \frac{\log\log{p}}{\sqrt{\log{p}}}p$, then $|A + A^*| \geqslant (1 – o(1))\min(2\sqrt{|A|p},p)$.
Constants 1/8, 1/9, and 2 are optimal.
To obtain this result, we use Croot-Laba-Sisask Lemma and properties of Wiener norms.
This continues the work of A. Balog, K. Benjamin, P.-Y. Bienvenu, K. Broughan, F. Hennecart, B. Murphy, M. Rudnev, I. Shkredov, I. Shparlinski, and E. Yazici.
Characterization of the $L^p$-Range of the Poisson Transform in Symmetric Spaces of Real Rank One (exposé en ligne)
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 janvier 2023 14:00-15:00 Lieu : Oratrice ou orateur : Nadia Ourchane (Rabat) Résumé :Let $X=G/K$ be a Riemannian symmetric space of non compact type with real rank one. For $\lambda \in \mathbb{C}$ and $f$ an integrable function on the Furstenberg boundary $K/M$, the Poisson transform $P_\lambda$ of $f$ is given by
$
(P_\lambda f)(x)=\int_{K/M} e^{(i\lambda+\rho)A(x,b)}f(b)db, \quad \mbox{for} \; x\in X.
$
The aim of this talk is to present a necessary and a suffucient condition on eigenfunctions of the Laplace-Beltrami operator associated to $X$ with eigenvalue $-(\lambda^2+\rho^2)$ to have an $L^p$-Poisson integral representations on the boundary $K/M$. A special discuss of the case of the exceptional symmetric space.
Non-canonical Bertrand numeration systems
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 décembre 2022 14:00-15:00 Lieu : Oratrice ou orateur : Emilie Charlier (université de Liège) Résumé :Among all positional numeration systems, the widely studied Bertrand numeration systems are defined by a simple criterion in terms of their numeration languages. In 1989, Bertrand-Mathis characterized them via representations in a real base $\beta$. However, the given condition turns out to be not necessary. In this talk, I will present a correction of Bertrand-Mathis’ result. The main difference arises when $\beta$ is a simple Parry number, in which case two associated Bertrand numeration systems are derived. Along the way, we define a non-canonical $\beta$-shift and study its properties analogously to those of the usual canonical one.
Suites automatiques et morphiques de grande complexité le long des sous-suites
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 8 décembre 2022 14:30-15:30 Lieu : Oratrice ou orateur : Pierre Popoli (IECL) Résumé :Dans cet exposé, je présenterai les différents résultats de ma thèse. Ces travaux se situent à l’intersection entre les mathématiques et l’informatique théorique.
Une suite pseudo-aléatoire, bien qu’engendrée par un algorithme déterministe, possède un comportement proche de celui d’une suite aléatoire. Nous nous intéressons à différentes mesures de complexité d’une suite pseudo-aléatoire, qui décrivent le comportement d’une suite aléatoire. De l’autre côté du spectre, les suites automatiques sont des suites profondément non aléatoires. La suite de Thue—Morse et la suite de Rudin—Shapiro sont des célèbres exemples de suites automatiques. Cependant certaines sous-suites des suites automatiques, comme les sous-suites polynomiales, sont bien plus aléatoires.
Dans un premier temps, nous exposerons les résultats des deux premiers articles. Ces deux articles étudient la complexité d’ordre maximal d’une suite, qui quantifie l’imprédictibilité d’une suite par un registre à décalage à rétroaction (FSR). Le premier article répond à une question de Sun et Winterhof (2019) sur la complexité d’ordre maximal de la suite de Thue—Morse le long de tout polynôme unitaire. Nous étudions ensuite le système de numération de Zeckendorf et sa fonction somme des chiffres est une suite morphique non-automatique. La suite de Fibonacci—Thue—Morse est l’analogue à celle de Thue—Morse en base de Zeckendorf. Le deuxième article étudie la complexité d’ordre maximal de cette suite le long de tout polynôme et nous montrons un résultat relativement différent à précédemment.
Ensuite, nous exposerons les résultats du troisième article. Nous nous intéressons à la somme des chiffres binaires des carrés parfaits. Le premier résultat est dans la lignée des travaux de Hare, Laishram et Stoll sur les entiers impairs qui ont le même poids de Hamming que leur carré. Nous résolvons une partie des cas restants de leur étude. Le second résultat porte sur les carrés parfaits de poids 4 et 5 et démontre partiellement une conjecture de Benett, Bugeaud et Mignotte.
La dernière partie de cette thèse porte sur les corrélations d’ordre $k$ de la suite de Rudin—Shapiro. Nous suivons les travaux de Aloui,Mauduit et Mkaouar sur les corrélations de la suite de Thue—Morse le long des premiers et établissons un résultat partiel sur les corrélations de la suite de Rudin—Shapiro le long des premiers.