Exposés à venir
Estimations explicites pour les sommes de fonctions arithmétiques, ou l'utilisation optimale de l'information spectrale finie sur les séries de Dirichlet
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Harald Helfgott (CNRS, IMJ) Résumé :Soit $F(s) = \sum_n a_n n^{-s}$ une série de Dirichlet. Supposons que l’on dispose d’un prolongement analytique de $F(s)$, ainsi que d’informations sur les pôles de $F(s)$ pour $|\Im s|\leq T$, où $T$ est une grande constante. Quelle est la meilleure manière d’exploiter ces données pour obtenir des estimations explicites des sommes $\sum_{n\leq x} a_n$?
Le cas de la fonction de Mertens $M(x) = \sum_{n\leq x} \mu(n)$ illustre à quel point cette question de base est restée ouverte. Il serait naturel de penser que borner $M(x)$ revient essentiellement à estimer $\psi(x) = \sum_{n\leq x} \Lambda(n)$. Pourtant, des bornes explicites assez satisfaisantes pour $\psi(x)-x$ sont connues depuis longtemps, alors que l’obtention de bonnes bornes pour $M(x)$ était un problème notoirement récalcitrant.
Nous donnons une méthode optimale pour utiliser l’information spectrale sur les pôles de $F(s)$ avec $|\Im s|\leq T$. Elle permet en particulier d’obtenir des bornes sur la fonction de Mertens nettement plus fortes que celles de la littérature, ainsi qu’une amélioration substantielle des estimations de ψ(x) pour des valeurs modérées de x.
Nous utilisons des fonctions de type « Beurling–Selberg » : plus précisément, un approximant optimal dû à Carneiro–Littmann, ainsi qu’un majorant/minorant optionnel dû à Graham–Vaaler. Notre procédure présente des points de contact avec le théorème de Wiener–Ikehara ainsi qu’avec des travaux de Ramana et Ramaré, mais ne dépend d’aucun résultat de la littérature classique sur les estimations explicites en théorie analytique des nombres.
Fréquences de lettres dans des suites auto-descriptives
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 décembre 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Mai Linh Tran-Cong Résumé :La suite d’Oldenburger-Kolakoski est l’unique mot infini sur l’alphabet {1,2} qui commence par un « 1 » et est point fixe de l’opérateur de dérivation. En 1991, M.S. Keane conjecture que cette suite admet une fréquence d’1/2 pour la lettre « 1 ».
Les suites dites « auto-descriptives » sont une généralisation du mot d’Oldenburger-Kolakoski. Ces suites sont en bijection naturelle avec l’ensemble de toutes les suites sur l’alphabet {1,2} : une suite auto-descriptive est dite « dirigée » par son homologue naturelle sur {1,2}. Est-il possible d’inférer les fréquences de lettres de l’une à partir de l’autre ?
Je présenterai dans cet exposé deux approches à cette question : l’une probabiliste (Boisson, Jamet, Marcovici — 2024), l’autre analytique (Akiyama, Jamet, Marcovici, T.C. — 2024).
Towards an asymptotic equivalence of Patterson–Sullivan and Wigner distributions for hyperbolic surfaces
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 8 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Guendalina Palmirotta (Paderborn) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 janvier 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cedric Pilatte (Oxford) Résumé :Antonio Lopez-Neumann (titre à venir)
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 22 janvier 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antonio Lopez-Neumann (Jussieu) Résumé :Miquel Cueca Ten (titre à venir)
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Miquel Cueca Ten (KU Leuven) Résumé :Jan Pulmann — titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 février 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jan Pulmann (Charles University) Résumé :Job Kuit — titre à venir
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 février 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Job Kuit (Paderborn) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 février 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Maud Szusterman (Ecole Polytechnique) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :Effie Papageorgiou (titre à venir)
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 mars 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Effie Papageorgiou Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Emma Weschler (Lille) Résumé :A venir
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :Archives
La méthode du col et les partitions des entiers
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 avril 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Manfred Madritsch (Université de Lorraine) Résumé :Dans le présent exposé, nous commençons par une introduction aux fonctions
génératrices et aux différentes méthodes permettant d’obtenir des formules
asymptotiques pour leurs coefficients. Après une excursion dans les nombres de
Fibonacci et les nombres catalans, nous introduisons les partitions d’entiers en
entiers. Autour de ce problème introductif, nous présentons la méthode du col et
ses applications. Ensuite, nous nous concentrons aux variants et des résultats récents. À la fin de l’exposé, nous présentons les travaux en cours
et des problèmes ouverts.
Les structures k-Poisson
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 avril 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Véronique Chloup (IÉCL) Résumé :Je donnerai la définition d’une structure k-Poisson vue comme une généralisation d’une structure k-plectique, étendant, en dimensions supérieures, le cas de la géométrie de Poisson et de la géométrie symplectique. Pour cela je suivrai l’article de Bursztyn, Cabrera, Iglesias : « Multisymplectic geometry and Lie groupoids » et je présenterai des définitions équivalentes permettant une utilisation plus facile. Pour finir, j’introduirai les structures k-Dirac qui généralisent ces notions et je développerai des exemples.
Uniform bounds for the density in Artin's conjecture on primitive roots
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 11 avril 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Antonella Perucca (Université du Luxembourg) Résumé :K-theory for crossed products by Bernoulli shifts
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 avril 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Siegfried Echterhoff (Münster) Résumé :For a large class of unital $C^*$-algebras $A$, we calculate the $K$-theory of reduced crossed products $A^{\otimes G}\rtimes_rG$ of Bernoulli shifts by groups satisfying the Baum-Connes conjecture. In particular, we give explicit formulas for finite-dimensional $C^*$-algebras, UHF-algebras, rotation algebras, and several other examples. As an application, we obtain a formula for the $K$-theory of reduced $C^*$-algebras of wreath products $H\wr G$ for large classes of groups $H$ and $G$.
Our results are motivated and generalize earlier results of Xin Li about the K-theory of lamplighter groups.
(joint work with Sayan Chakraborty, Julian Kranz, and Shintaro Nishikawa)
Bornes inférieures pour le nombre maximal de points rationnels des courbes sur les corps finis
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 4 avril 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Elisa Lorenzo Garcia (Université de Neuchâtel) Résumé :On the spectrum of the Dirac operator on degenerating Riemannian surfaces
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 4 avril 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Cipriana Anghel-Stan (Göttingen) Résumé :We study the behaviour of the spectrum of the spin Dirac operator on degenerating families of Riemannian surfaces, when the length of a simple closed geodesic shrinks to zero. We work under the hypothesis that the spin structure along the pinched geodesic is non-trivial. It is well-known that the spectrum of an elliptic differential operator on a compact manifold varies continuously under smooth perturbations of the metric. The difficulty of our problem arises from the non-compactness of the limit surface, which is of finite area with two cusps.
Changements de signes de sommes de fonctions multiplicatives
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :Dans cet exposé, nous présenterons une méthode simple et efficace, qui a ses origines dans les travaux de Baker et Montgomery, et qui permet de produire des changements de signe de sommes de certaines fonctions multiplicatives réelles. Nous illustrons ensuite deux applications aux sommes de caractères de Dirichlet quadratiques ainsi qu’aux sommes de fonctions multiplicatives aléatoires de Rademacher. Ceci est basé sur un travail en commun avec O. Klurman et M. Munsch.
Ind-variétés de drapeaux multiples de type fini
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 mars 2024 15:45-16:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Fresse (IÉCL) Résumé :Weyl sums with Multiplicative Coefficients and Joint Equidistribution
Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 21 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cynthia Bortolotto (ETH Zurich) Résumé :In 1964, Hooley proved that for an irreducible polynomial $p$ in $\mathbb{Z}[x]$, the ratios $v/n$ for $v$ roots of the polynomial $p$ modulo $n$, are equidistributed modulo $1$. We prove joint equidistribution of these roots of polynomial congruences and polynomial values. As part of the proof, we generalize a result of Montgomery and Vaughan regarding exponential sums with multiplicative coefficients to the setting of Weyl sums.
Action du groupe d’automorphismes sur la jacobienne de la quartique de Klein.
Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 mars 2024 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne Moreau (Orsay) Résumé :Selon une conjecture de Bernstein et Schwarzman, le quotient d’un espace affine complexe par un groupe cristallographique irréductible engendré par des réflexions est un espace projectif à poids. La conjecture fut démontrée par Schwarzman et Tokunaga-Yoshida pour presque tous tels groupes en dimension 2, et par Looijenga, Bernstein-Schwarzman et Kac-Peterson pour ceux de type Coxeter en toute dimension.
Dans cet exposé je présenterai un travail en commun avec Dimitri Markushevich dans lequel nous démontrons la conjecture pour l’unique groupe cristallographique engendré par des réflexions en dimension 3 dont la partie linéaire est le groupe simple de Klein, selon la classification de Popov. La preuve repose sur le calcul de la fonction de Hilbert de l’algèbre des invariants des fonctions thêta. Depuis la publication de notre travail, Rains a proposé une approche de la conjecture en toute généralité.