Séminaires

Les principaux séminaires de l’équipe ont lieu le lundi aux horaires suivants :

  • Séminaire de géométrie différentielle : 14h-15h
  • Séminaire de géométrie complexe : 15h30-16h30

Les responsables sont Damian Brotbeck pour la géométrie complexe et Benoit Daniel pour la géométrie différentielle.


The BNS sets of fundamental groups of complex algebraic varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 novembre 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :

The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 décembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 décembre 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Archives

Groupes fondamentaux des variétés projectives et conjecture de Shafarevich

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 mars 2019 15:30-16:30 Lieu : Oratrice ou orateur : Jérémy Daniel Résumé :

En 1974, Igor Shafarevich demande si les revêtements universels des variétés projectives sont toujours des variétés holomorphiquement convexes. Une réponse positive est donnée par Philippe Eyssidieux en 2004, dans le cas o๠le groupe fondamental de la variété admet une représentation linéaire fidèle. L’ingrédient principal de sa preuve est la théorie de Hodge non-abélienne qui établit une correspondance entre représentations du groupe fondamental et fibrés de Higgs sur la variété.
Depuis mes travaux de thèse, on dispose d’applications de périodes généralisées pour comprendre différemment cette correspondance. J’expliquerai ce que sont ces applications et comment on les utilise – dans un travail en cours avec Yohan Brunebarbe – pour étendre la preuve d’Eyssidieux à  des variétés quasi-projectives.


Des représentations de carquois aux fibrés sur les courbes.

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 mars 2019 15:30-16:30 Lieu : Oratrice ou orateur : Tristan Bozec Résumé :

Étant donnée une surface $X$, plusieurs programmes mathématiques plus ou moins récents et souvent inspirés par la physique se penchent sur les espaces dits « de modules » $M$ paramétrisant les fibrés vectoriels à  isomorphisme près. Une approche standard est d’exploiter la structure symplectique du cotangent $T^*M$ de tels espaces et d’en tirer des propriétés intéressantes. C’est dans ce cadre qu’Hitchin a le premier défini les fibrés dits de Higgs. Dans cet exposé j’approcherai ces problématiques par l’étude de ce qui peut-être vu comme un analogue discret du précédent problème: les représentations de carquois. Dans un premier temps j’expliquerai une formule précise illustrant cette analogie, basée sur des travaux de Schiffmann puis Mellit, et motivée par des conjectures établies par Hausel, Letellier et Rodriguez Villegas. Cette formule donne le nombre de composantes d’une sous-variété Lagrangienne de $T^*M$, qui peut être comprise comme un analogue du cône nilpotent en théorie de Lie. Dans un second temps je donnerai une description combinatoire de ces composantes.


Groupes de lacets - le point de vue analytique

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 4 mars 2019 10:15-12:00 Lieu : Oratrice ou orateur : Jeremy Daniel Résumé :

Rationality problem for hypersurfaces, II

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 26 février 2019 14:00-15:30 Lieu : Oratrice ou orateur : Stefan Schreieder Résumé :

I will briefly recall what is known about the rationality problem for smooth projective hypersurfaces. I then aim to explain how to prove the following new result: a very general hypersurface of dimension n>2 and degree at least log_2(n)+2 is not stably rational.


Rationality problem for hypersurfaces, I

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 février 2019 15:00-16:30 Lieu : Oratrice ou orateur : Stefan Schreieder Résumé :

I will briefly recall what is known about the rationality problem for smooth projective hypersurfaces. I then aim to explain how to prove the following new result: a very general hypersurface of dimension n>2 and degree at least log_2(n)+2 is not stably rational.


Régulateurs de corps de nombres et de variétés abéliennes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 février 2019 15:30-16:30 Lieu : Oratrice ou orateur : Fabien Pazuki Résumé :

L’étude des régulateurs revêt une importance toute particulière dans la compréhension du nombre du classes dans les familles de corps de nombres, et dans la compréhension de la conjecture de Birch et Swinnerton-Dyer dans le cas des variétés abéliennes. Ils jouent de plus un rôle clef dans les questions d’estimations sur le nombre de points rationnels de hauteur bornée sur une variété projective.
On présentera dans cet exposé trois inégalités, et les corollaires qui leur sont associés. La première, initiatrice de cet axe de recherche, est une minoration du régulateur des corps de nombres en fonction de leur discriminant et de leur degré : elle repose sur des travaux de Silverman et Friedman. La seconde concerne le régulateur des groupes de Mordell-Weil et la hauteur de Faltings des variétés abéliennes : elle est encore conjecturale. La troisième est inconditionnelle et concerne plus particulièrement les courbes elliptiques, elle fait l’objet d’un article récent en collaboration avec Pascal Autissier et Marc Hindry.


On the boundedness of minimal models of general type.

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 février 2019 15:30-16:30 Lieu : Oratrice ou orateur : Luca Tasin Résumé :

The question whether a class of varieties with fixed invariants form a bounded family is a crucial problem in algebraic geometry. In this talk I will report on such question from the point of view of Mori theory. In particular, in a joint work with D. Martinelli and S. Schreieder we treated the case of log minimal models of general type. I will also explain related results on the number of minimal models.


Variétés de drapeaux généralisées des groupes de Kac-Moody

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 4 février 2019 10:15-12:00 Lieu : Oratrice ou orateur : Nicole Bardy-Panse Résumé :

The Mumford-Tate conjecture for products of abelian varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 28 janvier 2019 15:30-16:30 Lieu : Oratrice ou orateur : Johan Commelin Résumé :

The Mumford-Tate conjecture relates the Hodge structure on the singular
cohomology of an algebraic variety (over a number field) with the
Galois
representation on the etale cohomology of that variety. In this talk I
will report on techniques for proving the Mumford-Tate conjecture for
products of abelian varieties, under the assumption that the conjecture
is known for the factors.


Géométrie hyperbolique des formes des corps convexes (avec C. Debin)

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 28 janvier 2019 14:00-15:00 Lieu : Oratrice ou orateur : François Fillastre Résumé :

On introduit une distance sur l’ensemble des corps convexes de l’espace euclidien de dimension n, à  translations et homothéties près. Cet ensemble se plonge isométriquement comme un convexe de l’espace hyperbolique de dimension infinie. La structure lorentzienne ambiante est donnée par une extension de l’aire intrinsèque des corps convexes. On en déduit que l’ensemble des formes des corps convexes (c’est-à -dire les corps convexes à  similitudes près) est muni d’une distance propre de courbure plus grande que -1. Pour les convexes en dimension 3, cet espace est homéomorphe à  l’espace des métriques sur la sphère de courbure positive.