Exposés à venir
Exposés passés
Higher multiplier ideals and Hodge theory
25 mars 2024 14:00-15:00 - Salle de conférences NancyOratrice ou orateur : Ruijie Yang
Résumé :
Starting from 1980s, multiplier ideals, arising simultaneously in complex geometry, number theory and singularity theory, has played an important role in complex algebraic geometry and commutative algebra. In this talk, I will introduce a refined version of multiplier ideals in the sense of Hodge theory, called higher multiplier ideals. It provides new invariants for singularities of hypersurfaces. This is based on the joint work with Christian Schnell.
Cohomologie L2 des Variations de Structure de Hodge sur les revêtements de courbes
18 mars 2024 14:00-15:00 - Salle de conférences NancyOratrice ou orateur : Bastien Jean
Résumé :
Dans cet exposé, nous allons présenter les propriétés de quelques complexes de sections L2 associée à une variation de structures de Hodge polarisées sur une variété Kählerienne. Nous allons nous intéresser plus particulièrement au cas d’un revêtement galoisien d’une courbe ouverte M muni d’une métrique à singularité de type Poincaré. Nous allons montrer que l’on obtient une structure de Hodge pure sur les groupes de cohomologie de ces complexes vu comme module sur une algèbre convenable dépendant du groupe du revêtement. Nous allons faire le lien si le temps le permet avec la théorie conjecturale de la cohomologie L2 des modules de Hodge sur les revêtements de variétés algébriques développée par P. Eyssidieux
A-upper motives
18 mars 2024 15:30-16:30 - Salle DöblinOratrice ou orateur : Nikita Karpenko
Résumé :
In a joint work with Charles de Clercq and Anne Quéguiner-Mathieu,
we are extending to arbitrary reductive groups former results on motivic
structure of projective homogeneous varieties under groups of inner type.
Séminaire groupes algébriques
11 mars 2024 14:00-15:00 - Salle de conférences NancyOratrice ou orateur : Claudio Bravo
Résumé :
Titre : Sur l’homologie relative des certains sous-groupes
arithmetiques de SU(3)
Dans une première partie de cet exposé, nous allons rappeler un certain nombre de théorèmes
classiques permettant d’appliquer la théorie géométrique des groupes à l’étude de leur homologie.
Dans une deuxième partie, on se concentrera sur l’homologie des certains groupes de nature arithmétique dans le contexte des corps globaux de caractéristique positive. Plus précisément, soit k un tel corps et soit G = SU3 le k-groupe non-déployé défini par une forme hermitienne en 3 variables.
On décrira alors les groupes d’homologie relative de certains sous-groupes arithmétiques G de G(k)
modulo un système de représentants U des classes de conjugaison de ses sous-groupes maximaux
unipotents. Autrement dit, cela permettra de comparer les groupes d’homologie de G au co-produit
des groupes d’homologie des éléments de U.
Cycles in the K3 period domain, moduli of families over the projective line, and deformation of hyperkähler metrics
11 mars 2024 15:30-16:30 - Salle DöblinOratrice ou orateur : Daniel Greb
Résumé :
Hyperkähler metrics on K3 surfaces give rise to rational curves of degree 2 in the K3 period domain, socalled « twistor cycles ». While these are used in the proofs of many deep results, their existence also implies that the group of isometries of the K3 lattice does not act properly discontinuously on the period domain, preventing a moduli space of unpolarised complex K3 surfaces to exist. I will report on work in progress with Martin Schwald (Cologne), in which we study the cycle space of the K3 period domain. This space parametrises twistor cycles as part of its real locus, but also all their degenerations and complex deformations as submanifolds of the period domain. I will explain how many foundational problems regarding the moduli theory of K3s disappear when passing to the cycle space and also indicate how the original version of Penrose’s Twistor Theory (the « nonlinear graviton » construction) can be used to understand what kind of geometric structure a small complex deformation of an honest twistor line corresponds to.
Séminaire commun de géométrie
4 mars 2024 14:00-16:00 -Oratrice ou orateur : Sébastien Boucksom
Résumé :
Métriques kählériennes canoniques et éclatements
L’existence de métriques kählériennes canoniques (Kähler-Einstein, à courbure scalaire constante, etc…) dans une classe de cohomologie donnée d’une variété kählérienne compacte admet une formulation variationnelle comme équation d’Euler-Lagrange de certaines fonctionnelles. Grâce aux travaux profonds de Darvas-Rubinstein et Chen-Cheng, on sait que de plus qu’elles admettent des points critiques (donc des métriques canoniques) ssi elles satisfont une condition de croissance linéaire. Après avoir passé en revue ces objets fondamentaux, j’expliquerai comment cette caractérisation permet de généraliser des travaux d’Arezzo-Pacard et Seyyedali-Szekelyhidi portant sur la stabilité de telles métriques par éclatement de la variété. Il s’agit d’un travail en collaboration avec Mattias Jonsson et Antonio Trusiani.
Groupes des automorphismes des $\mathbb{P}^1$-fibrés sur les surfaces réglées
19 février 2024 14:00-15:00 - Salle de conférences NancyOratrice ou orateur : Pascal Fong
Résumé :
La classification des sous-groupes algébriques des groupes des transformations birationnelles a été initiée par l’Ecole Italienne de la géométrie algébrique. Enriques et Fano énoncent la liste des sous-groupes algébriques connexes maximaux de $\mathrm{Bir}(\mathbb{P}^3)$ sur le corps des nombres complexes. En utilisant des méthodes analytiques, Umemura fournit une preuve de leur classification. Plus récemment, par des techniques purement algébriques, Blanc, Fanelli, Terpereau reconstituent et généralisent la quasi-intégralité de cette preuve. Dans cet exposé, on classifie les couples $(X,\mathrm{Aut}^\circ(X))$ tels que $X$ est un espace fibré en $\mathbb{P}^1$ sur une surface réglée non rationnelle S et $\mathrm{Aut}^\circ(X)$ est un sous-groupe algébrique connexe maximal dans $\mathrm{Bir}(X/S)$.
Fibrés de Fock et composantes de Hitchin
12 février 2024 14:00-15:00 - Salle de conférences NancyOratrice ou orateur : Alexander Thomas
Résumé :
L’étude des représentations d’un groupe fondamental d’une surface dans un groupe de Lie est décrite par la variété des caractères. Je présente une nouvelle approche, les fibrés de Fock, pour étudier les variétés des caractères. Malgré des similarités avec la théorie de Hodge nonabelienne, la différence cruciale est qu’aucune structure complexe est fixée sur la surface. Les fibrés de Fock sont étroitement liés aux structures complexes supérieures et mènent à un lien avec la composante de Hitchin. Travail en commun avec Georgios Kydonakis et Charlie Reid.
Sur la structure locale des champs analytiques.
29 janvier 2024 14:00-15:00 - Salle de conférences NancyOratrice ou orateur : Doan An-Khuong
Résumé :
Le but de cet exposé est d’introduire une question intéressante proposée par D. Rydh sur une version analytique de son théorème de type Luna qui dit qu’autour d’un point dont le stabilisateur est linéairement réductif, tout champ algébrique raisonnable est étale-localement équivalent à un champ de quotient. Après avoir formulé la version analytique, on la vérifie pour un (ou deux si le temps permet) espace(s) de modules classique(s): l’espace de Riemann (ou Teichmüller) de structures complexes, dont la version de champs analytiques a été récemment construite par L. Meersseman.
Séminaire de géométrie complexe
15 janvier 2024 14:00-15:00 -Oratrice ou orateur : Vladimir Lazić
Résumé :
Title: Rigid currents and birational geometry
Abstract: Rigid currents are closed positive currents whose cohomology class contains only one closed positive current. This notion originates (probably) from complex dynamics and has sporadically occured in different contexts. I will survey some of these, and then show how rigid currents occur when one studies the Abundance conjecture in birational geometry. This is joint work with Zhixin Xie.
Séminaire commun de géométrie
8 janvier 2024 14:00-16:00 -Oratrice ou orateur :
Résumé :
Séminaire commun de géométrie
18 décembre 2023 14:00-16:00 - Salle de conférences NancyOratrice ou orateur :
Résumé :
Sur la positivité maximale du cotangent logarithmique associé à un arrangement d’hyperplans
11 décembre 2023 14:00-15:00 - Salle de conférences NancyOratrice ou orateur : Clara Dérand
Résumé :
Une variété complexe est dite hyperbolique (au sens de Brody) si elle ne contient pas de courbe entière (non constante). Soit (X,D) est une paire logarithmique lisse, avec X une variété projective lisse et D un diviseur à croisements normaux. Le fibré cotangent logarithmique associé ne peut jamais être ample (on a un quotient trivial en restriction à chaque composante de D). On peut cependant montrer que si ce fibré est « le plus ample possible » (on dira qu’il est ample modulo D), alors le complémentaire X\D est hyperbolique. Plus généralement, on peut étudier la position des courbes entières via la positivité du cotangent logarithmique.
Dans cet exposé, on considérera le cas où D est un arrangement d’hyperplans en position générale dans Pn. On montrera une condition géométrique sur la position des hyperplans pour que le cotangent logarithmique soit ample modulo D, en construisant explicitement des droites d’obstruction. En particulier, on verra que pour au moins 4n-2 hyperplans génériques, le cotangent logarithmique est ample modulo D.
Séminaire groupes algébriques
4 décembre 2023 14:00-15:00 -Oratrice ou orateur : Paul Philippe
Résumé :
Titre : Ordre de Bruhat affine et théorie de Kazhdan-Lusztig
La structure d’un groupe réductif (ou plus généralement de Kac-Moody) est largement controlée par son groupe de Weyl. En particulier, si G est un groupe de Kac-Moody et B un sous-groupe de Borel, la théorie de Kazhdan-Lusztig relie étroitement la géométrie de la variété de drapeaux G/B avec la structure de Coxeter de W.
Si l’on étudie G au dessus d’un corps discrètement valué, comme les corps p-adiques, on peut remplacer B par le groupe d’Iwahori I pour prendre en compte l’existence d’une valuation. Le groupe de Weyl doit être remplacé par une affinisation W^+. Lorsque G est un groupe réductif, W^+ est encore un groupe de Coxeter ce qui permet d’étendre la théorie de Kazhdan-Lusztig à la variété de drapeaux affines G/I. Ce n’est plus vrai si G est un groupe de Kac-Moody général, en particulier il n’y a pas d’ordre de Bruhat naturel sur W^+. Néanmoins en 2018, D. Muthiah et D. Orr ont pu définir une relation d’ordre et une longueur associée sur W^+ analogue aux ordres de Bruhat. Dans cet exposé, je présenterais plusieurs propriétés de cet ordre que nous avons obtenues avec Auguste Hébert et, si le temps le permet, j’expliquerais leur importance pour la construction d’une théorie de Kazhdan-Lusztig adaptée à ce cadre.
Cayley-Bacharach condition and applications
20 novembre 2023 14:00-15:00 - Salle de conférences NancyOratrice ou orateur : Francesco Bastianelli
Résumé :
Séminaire groupes algébriques
13 novembre 2023 14:00-15:00 -Oratrice ou orateur : Alexandre Afgoustidis
Résumé :
Cet exposé devrait être similaire au séminaire qui sera donné le 18 novembre au séminaire Bourbaki par Alexandre Afgoustidis.
Titre : Progrès récents sur les représentations supercuspidales
Résumé : Soit G un groupe réductif sur un corps local non-archimédien F. Pour les questions de classification des représentations lisses irréductibles de G, l’étude des représentations supercuspidales – celles dont les coefficients matriciels sont à support compact modulo le centre – est en quelque sorte le noyau dur. Les progrès dans cette étude ont été continus depuis cinquante ans. Dans des cas « modérés » où la caractéristique résiduelle de F est suffisamment grande relativement à G, on disposait depuis 2001 d’une construction fort générale de représentations supercuspidales, décrite par J-K. Yu sur la base de nombreux travaux antérieurs. Mais les avancées récentes ont rendu le tableau beaucoup plus complet et beaucoup plus clair. Par exemple, les travaux de J. Fintzen, T. Kaletha et L. Spice fournissent (dans le cas modéré) une classification des représentations supercuspidales, une formule explicite pour « presque tous » leurs caractères, ainsi qu’une correspondance de Langlands explicite pour les paquets entièrement supercuspidaux. Bien que les constructions s’appuient de façon cruciale sur les représentations de groupes finis et la géométrie des immeubles, les formules de caractère et la description des paquets de Langlands présentent des parallèles saisissants avec le cas des groupes réels.
Séminaire commun de géométrie - Cônes de diviseurs sur $\mathbb{P}^3$ éclaté en $8$ points très généraux
6 novembre 2023 14:00-16:00 - Salle de conférences NancyOratrice ou orateur : Zhixin Xie
Résumé :
Soit $X$ l’éclatement de $\mathbb{P}^3$ en $8$ points très généraux. Alors $X$ est une variété projective lisse dont le diviseur anticanonique est nef mais non semiample.
Dans cet exposé, on donne une description explicite sur le cône nef et le cône pseudoeffectif de $X$. De plus, on montre qu’un certain groupe de Weyl agit sur le cône mobile effectif de $X$ avec un domaine fondamental rationnel polyhédral. Il s’agit d’un travail en collaboration avec Isabel Stenger.
Shafarevich morphism for linear representations in positive characteristic and hyperbolicity
16 octobre 2023 14:00-15:00 - Salle de conférences NancyOratrice ou orateur : Ya Deng
Résumé :
The Shafarevich conjecture predicts the holomorphic convexity of complex projective varieties. It results in the existence of the Shafarevich morphism. In the last three decades, this conjecture has been extensively studied when considering cases where fundamental groups are subgroups of complex general linear groups. In this talk I will discuss some recent work on the construction of Shafarevich morphism for any linear representation $\rho:\pi_1(X)\to GL_N(K)$ where $X$ is any complex quasi-projective variety and $K$ is any field of positive characteristic. I will also explain the proof of the generalized Green-Griffiths-Lang conjecture for $X$ when $\rho$ is a big representation. This talk is based on a joint work with Yamanoi.
Séminaire Commun de Géométrie
2 octobre 2023 14:00-16:00 -Oratrice ou orateur : Jean-René Chazotte
Résumé :
Séminaire Commun de Géométrie - Géométries de Hilbert et Funk, les mondes engloutis des convexes
3 juillet 2023 14:00-16:00 -Oratrice ou orateur : Constantin Vernicos
Résumé :
Géométries de Hilbert et Funk, les mondes engloutis des convexes
Le model de Klein ou projectif de la géométrie hyperbolique se définit à l’aide de la convexité de la boule euclidienne et le birapport. Hilbert fera remarquer à Klein que sa construction permet de définir de nouvelles géométries à l’intérieur de n’importe quel convexe.
Elle est fortement lié à une autre géométrie de nature affine, dite de Funk. Je me propose de vous faire une introduction à ces géométries et vous mener jusqu’à quelques résultats récents obtenus avec Faifman et Walsh qui relient la croissance volumique de ces géométries aux conjectures de Mahler et Kalaï.