Séminaires

Exposés à venir

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
 

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Viviana Grasselli (Metz), Camille Labourie (Nancy), Dominik Stantejsky (Nancy) et Alessandro Duca (Nancy).

Séminaire: Convection-dominated transport problems in thin graph-like networks

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel’nyk Résumé :

The lecture addresses time‑dependent convection–diffusion problems with high Péclet number in thin 3D graph‑like networks of curvilinear cylinders connected by nodes of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Robin boundary conditions with different intensity factors are imposed on the network boundary. As $\varepsilon \rightarrow 0,$ the network collapses to a graph and the diffusion terms vanish.

Such problems pose singular‑perturbation challenges that standard methods often cannot resolve. I present a systematic asymptotic framework for $\varepsilon \rightarrow 0,$ combining regular expansions on edges with node‑layer and boundary‑layer asymptotics to capture the multiscale flow structure. The analysis justifies reduced graph models, quantifies higher‑order corrections, and uncovers new phenomena in singular regimes.


Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 décembre 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :

Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives


Régularité d'un problème à frontière libre d'ordre 4

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 décembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :

Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.

C’est un travail en collaboration avec Jimmy Lamboley.


Séminaire: titre à venir

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :

Résumé à venir


Romeo LEYLEKIAN

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :

Laure GIOVANGIGLI

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :

Lucas COEURET

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :

Marc PEGON

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :

Nicolas VANSPRANGHE

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :

Benoit MERLET

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :

Camille LAURENT

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :

Archives

Séminaire : Boundary states of the magnetic Robin Laplacian

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 février 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Rayan Fahs (Université Toulouse III – Paul Sabatier) Résumé :

In this talk, I will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semi-classical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal dimensional reduction, I will explain how to derive a very precise Weyl law, and also how to simultaneously refine old results about the low-lying eigenvalues in the Robin case and recent ones about edge states in the Dirichlet case.


Population models with an interface region inside the domain

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 février 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pablo Alvarez Caudevilla (Madrid) Résumé :

We will discuss several models that might be regarded as migration models of populations moving from one part of a domain to the other and becoming part of the population living on the other side. Different situations assuming symmetry of movement between both sides of the domain, following a logistic model in their own environment and assuming spatial heterogeneities, are going to be discussed. Through such a common boundary both populations are coupled, acting as a permeable membrane on which their flow moves in and out. We will describe the precise interplay between the stationary solutions with respect to the parameters involved in the problem, in particular the growth rate of the populations and the coupling parameter involved on the boundary where the interchange of flux is taking place.


Yannick Privat – La propriété « bang-bang » en contrôle optimal

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 février 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yannick Privat Résumé :

Ce groupe de travail sera dédié à l’étude d’une propriété qualitative de certaines solutions de problèmes de calcul des variations ou de contrôle optimal, faisant intervenir des EDO ou des EDP : la propriété « bang-bang ».On définira dans un premier temps cette propriété en expliquant son utilité pratique. On donnera ensuite des exemples d’arguments permettant de la démontrer et exhiberons des familles de problèmes dont les solutions vérifient cette propriété. Enfin, nous détaillerons un argument récent appelé « principe de convexité cachée » permettant de démontrer cette propriété.


Séminaire : On Neumann-Poincaré operators and self-adjoint transmission problems

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 9 février 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Badreddine Benhellal (Universität Oldenburg) Résumé :

In this talk, we discuss the self-adjointness in $L^2$-setting of the operators acting as $-\mathrm{div}\cdot h\nabla$, with piecewise constant functions $h$ having a jump along a Lipschitz hypersurface $\Sigma$, without explicit assumptions on the sign of $h$. We establish a number of sufficient conditions for the selfadjointness of the operator with $H^{\frac{3}{2}}$-regularity in terms of the jump value and the regularity and geometric properties of $\Sigma$. An important intermediate step is a link with Fredholm properties of the NeumannPoincaré operator on $\Sigma$, which is new for the Lipschitz setting.

Based on joint work with Konstantin Pankrashkin.


Analyse numérique des schémas de Boltzmann sur réseau : des questions fondamentales aux méthodes adaptatives efficientes et précises

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 février 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Bellotti (Université de Strasbourg) Résumé :

L’exposé se veut un résumé de mes travaux de thèse, qui portent une attention particulière aux schémas de Boltzmann sur réseau. Cette classe de schémas est utilisée depuis la fin des années ’80, en particulier en mécanique des fluides, et se caractérise par sa grande rapidité. Cependant, les méthodes de Boltzmann sur réseau sont très gourmandes en termes d’espace mémoire et conçues pour des maillages Cartésiens uniformes. De plus, nous manquons d’outils théoriques généraux qui permettent d’en analyser la consistance, la stabilité et enfin la convergence. Le travail s’articule autour de deux axes principaux. Le premier consiste à proposer une stratégie permettant d’appliquer les méthodes de Boltzmann sur réseau à des grilles de calcul non-uniformes adaptées dynamiquement en temps, afin de réduire le coût de calcul et de stockage. Le fait de pouvoir contrôler l’erreur commise et d’être en mesure d’employer la méthode quel que soit le schéma de Boltzmann sous-jacent sont des contraintes supplémentaires à prendre en compte. Pour cela, nous proposons d’adapter dynamiquement le réseau ainsi que d’ajuster toute méthode de Boltzmann à des maillages non-uniformes en nous appuyant sur la multirésolution. Cela a permis de proposer un cadre innovant pour des maillages mobiles en respectant les contraintes posées. Le second axe de recherche consiste à donner un cadre mathématiquement rigoureux aux méthodes de Boltzmann sur réseau, lié en particulier à leur consistance vis-à-vis des EDPs visées, leur stabilité et donc leur convergence. Pour cela, nous proposons une procédure, basée sur des résultats d’algèbre, pour éliminer les moments non-conservés de n’importe quel schéma de Boltzmann sur réseau, en le transformant en un schéma aux différences finies multi-pas sur les moments conservés. Les notions de consistance et stabilité pertinentes pour les méthodes de Boltzmann sur réseau sont donc celles des schémas aux différences finies. En particulier, tous les résultats concernant ces derniers, entre autres le théorème de Lax, se transpose naturellement aux schémas de Boltzmann sur réseau. Une étape ultérieure consiste à étudier la consistance et la stabilité directement sur le schéma de départ sans devoir calculer sa méthode aux différences finies « correspondante ». Cela permet d’en obtenir les équations modifiées et de montrer le bien-fondé des analyses de stabilité à la von Neumann couramment utilisées au sein de la communauté.

 


Yannick Privat – La propriété « bang-bang » en contrôle optimal

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 février 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yannick Privat Résumé :

Ce groupe de travail sera dédié à l’étude d’une propriété qualitative de certaines solutions de problèmes de calcul des variations ou de contrôle optimal, faisant intervenir des EDO ou des EDP : la propriété « bang-bang ».On définira dans un premier temps cette propriété en expliquant son utilité pratique. On donnera ensuite des exemples d’arguments permettant de la démontrer et exhiberons des familles de problèmes dont les solutions vérifient cette propriété. Enfin, nous détaillerons un argument récent appelé « principe de convexité cachée » permettant de démontrer cette propriété.


Séminaire : Analyse numérique des schémas de Boltzmann sur réseau : des questions fondamentales aux méthodes adaptatives efficientes et précises

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 2 février 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Thomas Bellotti (Université de Strasbourg) Résumé :

L’exposé se veut un résumé de mes travaux de thèse, qui portent une attention particulière aux schémas de Boltzmann sur réseau. Cette classe de schémas est utilisée depuis la fin des années ’80, en particulier en mécanique des fluides, et se caractérise par sa grande rapidité. Cependant, les méthodes de Boltzmann sur réseau sont très gourmandes en termes d’espace mémoire et conçues pour des maillages Cartésiens uniformes. De plus, nous manquons d’outils théoriques généraux qui permettent d’en analyser la consistance, la stabilité et enfin la convergence. Le travail s’articule autour de deux axes principaux.
Le premier consiste à proposer une stratégie permettant d’appliquer les méthodes de Boltzmann sur réseau à des grilles de calcul non-uniformes adaptées dynamiquement en temps, afin de réduire le coût de calcul et de stockage. Le fait de pouvoir contrôler l’erreur commise et d’être en mesure d’employer la méthode quelque soit le schéma de Boltzmann sous-jacent sont des contraintes supplémentaires à prendre en compte. Pour cela, nous proposons d’adapter dynamiquement le réseau ainsi que d’ajuster toute méthode de Boltzmann à des maillages non-uniformes en nous appuyant sur la multirésolution. Cela a permis de proposer un cadre innovant pour des maillages mobiles en respectant les contraintes posées.
Le second axe de recherche consiste à donner un cadre mathématiquement rigoureux aux méthodes de Boltzmann sur réseau, lié en particulier à leur consistance vis-à-vis des EDPs visées, leur stabilité et donc leur convergence. Pour cela, nous proposons une procédure, basée sur des résultats d’algèbre, pour éliminer les moments non-conservés de n’importe quel schéma de Boltzmann sur réseau, en le transformant en un schéma aux différences finies multi-pas sur les moments conservés. Les notions de consistance et stabilité pertinentes pour les méthodes de Boltzmann sur réseau sont donc celles des schémas aux différences finies. En particulier, tous les résultats concernant ces derniers, entre autres le théorème de Lax, se transpose naturellement aux schémas de Boltzmann sur réseau. Une étape ultérieure consiste à étudier la consistance et la stabilité directement sur le schéma de départ sans devoir calculer sa méthode aux différences finies « correspondante ». Cela permet d’en obtenir les équations modifiées et de montrer le bien-fondé des analyses de stabilité à la von Neumann couramment utilisées au sein de la communauté.


Peut-on entendre la forme d’une pièce ?

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 janvier 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tom Sprunck (Université de Strasbourg) Résumé :

Depuis son introduction par Allen et Berkley en 1972, la méthode des
sources images est l’une des techniques les plus populaires pour la
modélisation des réponses impulsionnelles (RIR) en acoustique des
salles. Cette méthode modélise chaque réflexion d’une impulsion sonore
sur les murs d’une pièce rectangulaire (ou polyédrique) comme une source
impulsionnelle de type Dirac, obtenue à partir de critères géométriques
simples. Quelques travaux récents étudient l’estimation de la forme
d’une pièce tridimensionnelle en exploitant les temps d’arrivée des
échos dans l’enregistrement de la réponse impulsionnelle de salle.
Différentes limitations apparaissent dans ce type de méthode, notamment
la localisation temporelle des échos et leur labellisation. La méthode
présentée dans cet exposé permet la reconstruction des positions 3D des
sources images sans labellisation préalable des réflexions. Le problème
inverse est posé comme un problème convexe en dimension infinie de
reconstruction parcimonieuse en 3D des sources images, l’opérateur
linéaire d’observation à inverser faisant intervenir la solution de
l’équation des ondes avec un terme source mesure. Les dimensions d’une
pièce rectangulaire peuvent ensuite être estimées précisément à l’aide
du nuage de sources images ainsi reconstruites. L’exposé se conclura par
la présentation d’une approche alternative en cours de développement
basée sur l’optimisation de forme et la méthode des solutions
fondamentales, qui devrait permettre de dépasser le cas des pièces
rectangulaires.


Séminaire : Spectral Stability in the nonlinear Dirac equation with Soler-type nonlinearity

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 26 janvier 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Julien Ricaud (Ecole Polytechnique) Résumé :

This talk concerns the (generalized) Soler model: a nonlinear (massive) Dirac equation with a nonlinearity taking the form of a space-dependent mass. The equation admits standing wave solutions and they are generally expected to be stable (i.e., small perturbations in the initial conditions stay small) based on numerical simulations. However, contrarily to the nonlinear Schrödinger equation for example, there are very few results in this direction. The results that I will discuss concern the simpler question of spectral stability (and instability), i.e., the absence (or presence) of exponentially growing solutions to the linearized equation around a solitary wave. As in the case of the nonlinear Schrödinger equation, this is equivalent to the presence or absence of « unstable eigenvalues » of a non-selfadjoint operator with a particular block structure. I will highlight the differences and similarities with the Schrödinger case, present some results for the one-dimensional case, and discuss open problems.

This is joint work with Danko Aldunate, Edgardo Stockmeyer, and Hanne Van Den Bosch.


Observateurs adaptatifs pour l'équation des ondes et leurs discrétisations associées : formulation et analyse

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 janvier 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tiphaine Delaunay (Inria Paris) Résumé :
Le contexte de cette présentation est l’étude de problèmes inverses pour les phénomènes de propagation d’onde sous l’angle de la théorie du contrôle, plus précisément la théorie de l’observation. Notre objectif est de formaliser, d’analyser et de discrétiser des stratégies appelées séquentielles en assimilation de données, où les observations sont prises en compte à mesure qu’elles sont disponibles. Le système résultant appelé observateur (ou estimateur séquentiel) se stabilise sur la trajectoire observée reconstruisant alors l’ état et éventuellement des paramètres inconnus du système. Ici nous nous concentrons plus particulièrement sur la reconstruction de source au second membre d’une équation des ondes, un problème d’estimation qui peut apparaître comme intermédiaire en compléxité entre l’estimation d’ état (ou de condition initiale) et l’identification de paramètres généraux. Dans ce cadre, nous proposons de définir dans un formalisme déterministe en dimension infinie, un estimateur dit de Kalman qui estime séquentiellement le terme source à identifier. Par les outils de programmation dynamique, nous montrons que cet estimateur séquentiel est équivalent à la minimisation d’une fonctionnelle, cette équivalence nous permettant d’en proposer l’analyse de convergence sous condition d’observabilité. Nous démontrons alors des inégalités d’observabilité pour différents types de source en combinant analyse fonctionnelle, méthodes des multiplicateurs et estimations de Carleman. Ces inégalités nous informent notamment sur le caractère éventuellement mal-posé des problèmes inverses de reconstruction que nous étudions et nous permettent d’en quantifier le degré et ainsi d’adapter les régularisation proposées. Concernant les questions de discrétisation et leur analyse numérique, nous défendons l’idée de redéfinir ces observateurs associés à la minimisation de la fonctionnelle une fois que le modèle direct a été discrétisé. Cette approche discrétiser-puis-optimiser est avantageuse pour l’analyse par rapport à optimiser-puis-discrétiser. Il n’en reste pas moins que les inégalités d’observabilité doivent être étendues aux systèmes discrets. A ce propos, nous étendons en particulier des résultats de stabilisation exponentielle uniforme en la discrétisation pour des discrétisations par éléments finis de haut degré de l’équation des ondes.

5 6 7 8 9 10 11 12 13 14 15 16