Séminaires d’équations aux dérivées partielles à Metz et Nancy
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).
Exposés à venir
Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).
En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.
Hugo Parada (Université de Toulouse)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :Dominik Stantejsky
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :TBA
Lorenzo Lamberti (IECL)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :Dominik Stantejsky
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :TBA
Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.
Travail en collaboration avec Hannes Kern (TU Berlin).
Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Ngoc Nhi Nguyen (Université de Milan)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Idriss Mazari (Université Paris-Dauphine)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :Raphaël Côte (Université de Strasbourg)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :Didier Bresch (Université de Savoie)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :Pierre Rouchon (Mines Paris)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :Archives
Rearrangement of gradient
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 2 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrea Gentile (Naples) Résumé :Collisions de points-vortex
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 avril 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Martin Donati (Grenoble) Résumé :Le système point-vortex décrit la dynamique de tourbillons idéaux dans un fluide 2D incompressible et non visqueux. Lorsqu’une collision de points-vortex se produit, la dynamique devient singulière et le temps de vie maximal des solutions est atteint. Nous discuterons de ce phénomène en montrant en particulier que les trajectoires des points-vortex sont 1/2-Hölderiennes jusqu’au temps de collision. Nous verrons également comment ce résultat s’étend en présence d’un bord, ainsi que dans le contexte des fluides quasi-géostrophiques. Nous mentionnerons également un résultat d’improbabilité des collisions, ainsi que le problème ouvert de l’existence de collisions au bord d’un domaine.
Séminaire : Generalised resolvent convergence: different concepts
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 avril 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Olaf Post (Trier) Résumé :In this talk, I present some recent results on generalised norm resolvent convergence: Weidmann proposed such a concept by embedding everything in a common Hilbert space and consider convergence there. Another concept is to use so-called identification operators close to unitary operators. This is a joint work with Sebastian Zimmer (Uni Trier).
Ludovick Gagnon - La méthode du Backstepping de Fredholm pour les EDPs
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 avril 2023 09:15-10:15 Lieu : Oratrice ou orateur : Ludovick Gagnon Résumé :Introduite par Balogh et Krstic dans le début des années 2000 pour les EDP, la méthode du Backstepping consiste à construire une loi de rétroaction stabilisant exponentiellement rapidement l’EDP considérée en cherchant l’existence d’une transformation liant l’EDP à stabiliser à une EDP cible exponentiellement stable. Si cette transformation est inversible, alors la stabilité de l’EDP à stabiliser est assurée. Inspirée de la dimension finie, cette transformation a d’abord été recherchée sous la forme d’une transformation de Volterra. L’inversibilité étant garantie, les propriétés d’existence et de régularité reposent sur une EDP non standard sur le noyau de la transformation. Cette approche s’est avérée très efficace, donnant lieu à une très vaste littérature, bien qu’il n’existe pas à ce jour de théorie permettant d’expliquer l’existence d’une telle transformation.
Plus récemment, Coron et Lü ont proposé la recherche d’une transformation de Fredholm pour la méthode du Backstepping. Bien que plus technique, cette alternative s’est rapidement distinguée par son approche systématique. Dans ce groupe de travail, nous présenterons des travaux récents dans lesquels nous avons identifiés pour la première fois des conditions suffisantes (spectrales et de contrôlabilité) menant à l’existence d’une transformation de Fredholm pour le Backstepping dans un cadre abstrait très général. En plus de ces critères, nous présenterons également des estimations explicites sur la norme de la transformation, ainsi que de son inverse, par rapport au paramètre de décroissance exponentielle, menant en particulier à la stabilisation en temps fini.
Il s’agit de travaux en collaboration avec Amaury Hayat, Swann Marx, Shengquan Xiang et Christophe Zhang.
Bornes gaussiennes généralisées pour des opérateurs de convolution itérés
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 4 avril 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jean-François Coulombel (Toulouse) Résumé :L’exposé se fera en visio-conférence.
Résumé : On présente quelques résultats autour du
comportement asymptotique
d’opérateurs de convolution itérés (en une dimension d’espace). Ce
problème intervient à la
fois dans l’étude en temps grand des schémas aux différences finies pour
les équations
d’évolution ainsi que dans l’étude en temps grand des marches
aléatoires. Le but est d’obtenir
une généralisation du théorème dit de la limite locale en théorie des
probabilités, et de montrer
des bornes gaussiennes généralisées dans le cas « stable » des schémas
numériques stables pour
la norme du maximum. Il s’agit d’un travail en collaboration avec
Grégory Faye.
Ludovick Gagnon - La méthode du Backstepping de Fredholm pour les EDPs
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 4 avril 2023 09:15-10:15 Lieu : Oratrice ou orateur : Ludovick Gagnon Résumé :Introduite par Balogh et Krstic dans le début des années 2000 pour les EDP, la méthode du Backstepping consiste à construire une loi de rétroaction stabilisant exponentiellement rapidement l’EDP considérée en cherchant l’existence d’une transformation liant l’EDP à stabiliser à une EDP cible exponentiellement stable. Si cette transformation est inversible, alors la stabilité de l’EDP à stabiliser est assurée. Inspirée de la dimension finie, cette transformation a d’abord été recherchée sous la forme d’une transformation de Volterra. L’inversibilité étant garantie, les propriétés d’existence et de régularité reposent sur une EDP non standard sur le noyau de la transformation. Cette approche s’est avérée très efficace, donnant lieu à une très vaste littérature, bien qu’il n’existe pas à ce jour de théorie permettant d’expliquer l’existence d’une telle transformation.
Plus récemment, Coron et Lü ont proposé la recherche d’une transformation de Fredholm pour la méthode du Backstepping. Bien que plus technique, cette alternative s’est rapidement distinguée par son approche systématique. Dans ce groupe de travail, nous présenterons des travaux récents dans lesquels nous avons identifiés pour la première fois des conditions suffisantes (spectrales et de contrôlabilité) menant à l’existence d’une transformation de Fredholm pour le Backstepping dans un cadre abstrait très général. En plus de ces critères, nous présenterons également des estimations explicites sur la norme de la transformation, ainsi que de son inverse, par rapport au paramètre de décroissance exponentielle, menant en particulier à la stabilisation en temps fini.
Il s’agit de travaux en collaboration avec Amaury Hayat, Swann Marx, Shengquan Xiang et Christophe Zhang.
Interaction forte de deux ondes solitaires de fmKdV
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 mars 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Frédéric Valet (Bergen) Résumé :Annulé : Pablo Alvarez-Caudevilla (Madrid)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 mars 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pablo Alvarez-Caudevilla (Madrid) Résumé :Séminaire : Existence Results for some Impulsive Evolution Equations with Nonlocal Conditions
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 17 mars 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Toka Diagana (University of Alabama in Huntsville, USA) Résumé :In this presentation, we investigate and establish the existence of bounded solutions to some classes of impulsive evolution equations with nonlocal conditions under some suitable assumptions. Possible applications to this problem include Burgers equation and the Benjamin-Bona-Mohany equation with impulses and nonlocal conditions.