Séminaires

Exposés à venir

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
 

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Anne-Sophie de Suzzoni (Polytechnique)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne-Siphie de Suzzoni (Polytechnique) Résumé :

Jérôme Le Rousseau (Université Paris Nord)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :

Anisa Chorwadwala (IISER, India)

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anisa Chorwadwala (IISER, India) Résumé :

Karol Bołbotowski (Université de Varsovie)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Karol Bołbotowski (Université de Varsovie) Résumé :

Viet Dang Nguyen (Université de Strasbourg)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Viet Dang Nguyen (Université de Strasbourg) Résumé :

Xavier Lamy (Université de Toulouse)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Lamy (Université de Toulouse) Résumé :

Archives

(Annulé et reporté) T-coercivity: a practical tool for the study of variational formulations

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 31 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Patrick Ciarlet (ENSTA) Résumé :

Variational formulations are a popular tool to analyse linear PDEs (eg. neutron
diffusion, Maxwell equations, Stokes equations …), and it also provides a
convenient basis to design numerical methods to solve them. Of paramount
importance is the inf-sup condition, designed by Ladyzhenskaya, Necas,
Babuska and Brezzi in the 1960s and 1970s. As is well-known, it provides
sharp conditions to prove well-posedness of the problem, namely existence
and uniqueness of the solution, and continuous dependence with respect to the
data. Then, to solve the approximate, or discrete, problems, there is the
(uniform) discrete inf-sup condition, to ensure existence of the approximate
solutions, and convergence of those solutions to the exact solution. Often, the
two sides of this problem (exact and approximate) are handled separately, or at
least no explicit connection is made between the two.

In this talk, I will focus on an approach that is completely equivalent to the
inf-sup condition for problems set in Hilbert spaces, the T-coercivity
approach. This approach relies on the design of an explicit operator to realize
the inf-sup condition. If the operator is carefully chosen, it can provide useful
insight for a straightforward definition of the approximation of the exact
problem. As a matter of fact, the derivation of the discrete inf-sup condition
often becomes elementary, at least when one considers conforming methods,
that is when the discrete spaces are subspaces of the exact Hilbert spaces. In
this way, both the exact and the approximate problems are considered,
analysed and solved at once.

In itself, T-coercivity is not a new theory, however it seems that some of its
strengths have been overlooked, and that, if used properly, it can be a simple,
yet powerful tool to analyse and solve linear PDEs. In particular, it provides
guidelines such as, which abstract tools and which numerical methods are the
most “natural” to analyse and solve the problem at hand. In other words, it
allows one to select simply appropriate tools in the mathematical, or
numerical, toolboxes. This claim will be illustrated on classical linear PDEs,
and for some generalizations of those models.


Groupe de travail : Factorisation orthogonale d'une matrice par blocs sous une forme échelonnée spéciale, et applications

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 27 janvier 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Baptiste Bellet Résumé :

Dans cet exposé, on présente une factorisation orthogonale d’une matrice sous une certaine forme échelonnée, avec un algorithme itératif associé. Cette factorisation, dédiée aux matrices par blocs, réalise un compromis entre la méthode du pivot de Gauss qui échelonne, et la décomposition en valeurs singulières qui diagonalise par transformations orthogonales. On montrera des applications en interpolation (publiées récemment avec J.-P. Croisille et M. Brachet), ainsi que des applications en optimisation multi-critère (si le temps le permet).


Existence globale pour un modèle de chimiotactisme avec interaction locale

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Philippe Laurençot (Université de Savoie) Résumé :

L’existence globale de solutions classiques est étudiée pour un modèle de chimiotactisme basé sur des interactions locales individu/signal et incluant une mobilité décroissante quand l’intensité du signal augmente. Contrairement au modèle classique de chimiotactisme de Keller-Segel, on montre qu’il n’y a pas d’explosion en temps fini. On identifie de plus une classe de mobilités pour lesquelles les solutions sont bornées (collaborations avec Jie Jiang, Wuhan et Yanyan Zhang, Shanghai).


Mickaël Nahon (Institut Max Planck)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :

Frédéric Robert – Instabilité pour des équations elliptiques de type courbure scalaire

Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 17 janvier 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Frédéric Robert Résumé :

L’équation de courbure scalaire dans une classe conforme est une EDP elliptique non-linéaire d’ordre 2. La nonlinéarité est critique du point de vue des plongements de Sobolev. L’invariance conforme et cette criticalité rendent cette équation non-compacte, au sens où l’ensemble de ses solutions n’est pas compact dans C^2. Cette non-compacité perdure pour des perturbations de l’équation, et on parle alors d’instablité. Dans ces exposés, je parlerai des diverses description de cette instabilité pour cette équation ainsi que pour des classes plus large de problèmes, en particulier d’ordre >2.


Une approximation volumes finis pour une équation de convection-diffusion avec terme d'effet Joule

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Creusé (Université de Valenciennes) Résumé :

Dans cet exposé, nous nous intéressons à une équation de convection-diffusion avec un terme non linéaire en gradient de température appelé terme « d’effet Joule ». Une méthode de volumes finis est proposée pour l’approximation numérique de la solution, dont la convergence vers une solution faible est démontrée. Nous établissons en particulier une inégalité discrète de Gagliardo-Nirenberg d’ordre deux sur laquelle la preuve s’appuie. Ce travail a été réalisé en collaboration avec Caterina Calgaro et Clément Cancès.


Frédéric Robert – Instabilité pour des équations elliptiques de type courbure scalaire

Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 10 janvier 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fréréic Robert Résumé :

L’équation de courbure scalaire dans une classe conforme est une EDP elliptique non-linéaire d’ordre 2. La nonlinéarité est critique du point de vue des plongements de Sobolev. L’invariance conforme et cette criticalité rendent cette équation non-compacte, au sens où l’ensemble de ses solutions n’est pas compact dans C^2. Cette non-compacité perdure pour des perturbations de l’équation, et on parle alors d’instabilité. Dans ces exposés, je parlerai des diverses description de cette instabilité pour cette équation ainsi que pour des classes plus large de problèmes, en particulier d’ordre >2.


Séminaire : Le système de Vlasov-Navier-Stokes avec absorption : pénalisation visqueuse ?

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 janvier 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Ayman Moussa Résumé :

Le système de Vlasov-Navier-Stokes est un couplage fluide/cinétique décrivant l’évolution d’un aérosol au sein d’un fluide. Dans le contexte de l’aérosolthérapie, l’absorption est la condition aux bords la plus adéquate pour la phase dispersée, en raison de la présence de mucus sur les voies aériennes pulmonaires. En gardant ce cadre applicatif à l’esprit, on s’interrogera sur la possibilité de récupérer cette condition au bord par l’étude du même système dans tout l’espace, dans une limite (localisée) de grande viscosité, en utilisant la théorie des traces renormalisées de Boyer-Mischler pour les équations de transport.


Paul Alphonse (ENS Lyon)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Paul Alphonse (ENS Lyon) Résumé :

Rencontre GDR – Calva "Théorie de la mesure géométrique et Calcul des variations"

Catégorie d’évènement : Conférence Date/heure : 13 décembre 2022 – 14 décembre 2022 00:00-00:00 Lieu : Description

Rencontre GDR-Calva à Nancy 13-14 décembre 2022

Site de la rencontre :  https://indico.math.cnrs.fr/event/8364/page/567-accueil

Organisateurs:  Antoine Lemenant (Nancy), Reza Pakzad (Toulon)

Gestion administrative: Virginie Lamouroux (Nancy), Valérie Gobert (Nancy)

Pour toute question veuillez contacter : Antoine.Lemenant@univ-lorraine.fr

Liste des orateurs :

Jean-François Babadjian (Paris-Saclay)

Antonin Chambolle (Paris-Dauphine)

Gisella Croce (Le Havre)

Thierry De Pauw (Paris)

Guy David (Paris Saclay)

Michael Goldman (Paris)

Ilaria Lucardesi (Florence)

Exposés courts :

Jules Candau-Tilh (Lille-Paris)

Peter Gladbach (Bonn)

Camille Labourie (Erlangen-Nuremberg)

Yana Teplitskaya (Leiden)