Séminaires

Exposés à venir

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
 

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Anne-Sophie de Suzzoni (Polytechnique)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne-Siphie de Suzzoni (Polytechnique) Résumé :

Jérôme Le Rousseau (Université Paris Nord)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :

Anisa Chorwadwala (IISER, India)

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anisa Chorwadwala (IISER, India) Résumé :

Karol Bołbotowski (Université de Varsovie)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Karol Bołbotowski (Université de Varsovie) Résumé :

Viet Dang Nguyen (Université de Strasbourg)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Viet Dang Nguyen (Université de Strasbourg) Résumé :

Xavier Lamy (Université de Toulouse)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Lamy (Université de Toulouse) Résumé :

Archives

Laplacien et géodésiques sur les surfaces hyperboliques

Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 14 juin 2022 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Samuel Tapie Résumé :
Sur une surface plus compliquée qu’un tore, les seules géométries homogènes (i.e. où les petits voisinages des points sont tous isométriques) sont les géométries hyperboliques. De même que l’étude du Laplacien sur le tore peut se faire grâce aux séries de Fourier, la compréhension du Laplacien sur les surfaces hyperboliques est liée à celle des géodésiques (les trajectoires qui « avancent tout droit ») sur ces surfaces.
Dans ces exposés, j’introduirai les surfaces hyperboliques selon différents points de vue ainsi que leur Laplacien et leur flot géodésique, et je montrerai comment le bas du spectre du Laplacien est relié à l’entropie du flot géodésique. Si le temps le permet, nous parlerons du lien entre fonctions propres pour le Laplacien et probabilités invariantes pour le flot géodésique.

Séminaire : Plongements des surfaces à la courbure distributionnelle non-negative

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 juin 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Reza Pakzad Résumé :

On présente d’abord les notions de base et quelques résultats connus sur les plongements isométriques de régularité faible des variétés riemanniennes dans les espaces euclidiennes en basse dimension, sur leurs deux versants de flexibilité (h-principe) et rigidité, dont quelques résultats récents. En particulier, on note que Borisov, et le suivant, Conti-De Lellis et Székelyhidi, ont démontré la convexité de l’image d’un tel plongement dans R3 d’une surface sans bord si sa métrique est régulière de classe C2,β, la courbure est positive, et le plongement est de classe C1,α pour α>2/3. On discute la généralisation de ce résultat au cas où la métrique est seulement de classe C1,α et la courbure au sens distributionnel est seulement non-négative. Pour établir cette généralisation, une nouvelle approche moyennant l’étude de l’équation de Monge-Ampère au sens très faible devient nécessaire.


Control of parameter dependent systems: how to compute greedy, ensemble or averaged controls?

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 juin 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Lohéac (CRAN) Résumé :

In this talk I will provide an overview on the problem of controllability of parameter dependent systems. I will explore different control notions successfully developed through the last decade.
The aim of the control function is to steer the system to a state satisfying some properties prescribed either at some time instant T>0 or during a given time interval. These properties may be separated with respect to parameter values and can refer just to a single system itself (e.g. greedy control), or may consider solutions corresponding to the whole parameter range (e.g. ensemble control, averaged control). In the latter case control functions are designed as parameter invariant, implying a same control is to be applied to the system independently of a particular realization of the parameter, while in the first case controls vary along with the parameter. Beside the positive theoretical results, for each notion we provide a computational algorithm.


Séminaire : Contrôle de l'équation de la chaleur par des formes et phénomène bang-bang en dimension infinie

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 3 juin 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Christophe Zhang Résumé :

On s’intéresse à un problème de contrôle approché de l’équation de la chaleur par des « formes » : à l’aide d’un terme source donné par la fonction caractéristique d’un ensemble (variable dans le temps, de mesure uniformément bornée), on cherche à emmener la solution près d’un état final donné.

Ces contrôles très particuliers peuvent être vus comme des points extrémaux d’un certain ensemble convexe : or beaucoup de problèmes de contrôle optimal (et d’optimisation en général) ont pour minimiseurs (ou maximiseurs) des points extrémaux. Pour trouver le « bon » problème d’optimisation, on combine la dualité de Fenchel-Rockafellar, qui associe à un problème d’optimisation (dit primal) un problème dit dual, et le principe « de la baignoire », qui concerne la maximisation sous contraintes d’un produit scalaire. Les contrôles optimaux associés à ce « bon » problème ont alors de bonnes chances d’être des formes, et de répondre ainsi à la question initiale.

La méthode de preuve permet d’étudier plus généralement la question du contrôle d’EDP avec des contraintes sur le contrainte, notamment le phénomène dit « bang-bang » : en dimension finie, il a été souvent observé que les contrôles optimaux (notamment les contrôles en temps minimal) saturent les contraintes qui leur sont imposées, et ont donc une forme plus simple (par exemple, une fonction constante par morceaux en temps). Le phénomène apparaît également en dimension infinie et nous verrons comment l’approche développée pour l’équation de la chaleur permet de l’étudier.


Séminaire : États fondamentaux quasi-classiques en électrodynamique quantique non-relativiste

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 20 mai 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jimmy Payet Résumé :

On considère des modèles de théorie quantique des champs décrivant l’évolution d’une particule non-relativiste couplée à un champ quantifié. L’énergie d’un tel système est associée à un opérateur auto-adjoint, un hamiltonien, agissant sur un espace de Hilbert approprié. Dans cet exposé, nous nous intéressons à la minimisation de l’énergie quasi-classique de ce système, c’est-à-dire l’énergie lorsque le champ se trouve dans un état cohérent. Les minimiseurs d’une telle énergie sont appelés états fondamentaux quasi-classiques. Nous verrons que le problème de minimisation peut se réduire à la minimisation d’une fonctionnelle de Hartree, ou d’un système couplé Maxwell-Schrödinger, selon le modèle considéré. Nous montrerons l’existence et l’unicité d’un état fondamental quasi-classique pour ces modèles. Enfin, nous verrons que ces états permettent de décomposer l’énergie fondamentale du modèle en deux parties : une quasi-classique, calculée lors de la minimisation sur les états cohérents, et une autre correspondant à la contribution des états excités.


A varifold perspective on discrete surfaces

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 mai 2022 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Blanche Buet (Laboratoire de mathématiques d’Orsay) Résumé :
Joint work with: Gian Paolo Leonardi (Trento), Simon Masnou (Lyon) and Martin Rumpf (Bonn).
We propose a natural framework for the study of surfaces and their different discretizations based on varifolds. Varifolds have been introduced by Almgren to carry out the study of minimal surfaces. Though mainly used in the context of rectifiable sets, they turn out to be well suited to the study of discrete type objects as well.
While the structure of varifold is flexible enough to adapt to both regular and discrete objects, it allows to define variational notions of mean curvature and second fundamental form based on the divergence theorem. Thanks to a regularization of these weak formulations, we propose a notion of discrete curvature (actually a family of discrete curvatures associated with a regularization scale) relying only on the varifold structure. We prove nice convergence properties involving a natural growth assumption: the scale of regularization must be large with respect to the accuracy of the discretization. We performed numerical computations of mean curvature and Gaussian curvature on point clouds in R^3 to illustrate this approach.
Building on the explicit expression of approximate mean curvature we propose, we perform mean curvature flow of point cloud varifolds beyond the formation of singularities and we recover well-known soap films.

Remarques sur le Problème de Cauchy pour le laplacien et Contrôle lagrangien de l'équation d’Euler

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 mai 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Otared Kavian (Université de Versailles) Résumé :


Intégration convexe et solutions anomales d'EDP

Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 10 mai 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Reza Pakzad Résumé :

On présente d’abord un ensemble de résultats concernant les équations d’Euler en mécanique des fluides, les immersions isométriques, et l’équation de Monge-Ampère au sens très faible. Le but est de souligner dans chaque cas la présence d’une dichotomie, dépendant de la régularité des solutions, de flexibilité (c.-à-d. l’existence et l’abondance de solutions dites anomales) et de rigidité (c.-à-d. les propriétés restrictives des solutions ). Ensuite, on décrit les structures sous-jacentes communes à ces EDP vues comme des problèmes d’inclusions différentielles, qui nous permettent d’utiliser les méthodes du théorème de Baire et de l’intégration convexe pour établir les résultats d’existence, où on fait valoir les aspects fondamentaux de ces méthodes. À titre d’exemple, on décrit comment prouver l’existence de solutions anormales très faibles de régularité de Lipschitz à l’équation de Monge-Ampère, et comment améliorer cette approche pour trouver des solutions C^{1,α} pour α < 1/5 ; (la valeur critique de α pour une telle construction reste un problème ouvert).


On parabolic problems with superlinear gradient terms

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 mai 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Martina Magliocca (Ecole normale supérieure Paris-Saclay) Résumé :


Intégration convexe et solutions anomales d'EDP

Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 3 mai 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Reza Pakzad Résumé :

On présente d’abord un ensemble de résultats concernant les équations d’Euler en mécanique des fluides, les immersions isométriques, et l’équation de Monge-Ampère au sens très faible. Le but est de souligner dans chaque cas la présence d’une dichotomie, dépendant de la régularité des solutions, de flexibilité (c.-à-d. l’existence et l’abondance de solutions dites anomales) et de rigidité (c.-à-d. les propriétés restrictives des solutions ). Ensuite, on décrit les structures sous-jacentes communes à ces EDP vues comme des problèmes d’inclusions différentielles, qui nous permettent d’utiliser les méthodes du théorème de Baire et de l’intégration convexe pour établir les résultats d’existence, où on fait valoir les aspects fondamentaux de ces méthodes. À titre d’exemple, on décrit comment prouver l’existence de solutions anormales très faibles de régularité de Lipschitz à l’équation de Monge-Ampère, et comment améliorer cette approche pour trouver des solutions C^{1,α} pour α < 1/5 ; (la valeur critique de α pour une telle construction reste un problème ouvert).