Séminaires

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Exposés à venir

Controllability of some wave equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :

In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.


Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Archives

Sensitivity analysis for identification of voids under Navier's boundary conditions in linear elasticity

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2020 10:45-11:45 Lieu : Oratrice ou orateur : Bochra Mejri Résumé :

This talk is concerned with a geometric inverse problem related to the two-dimensional linear elasticity system. Thereby, voids under Navier’s boundary conditions are reconstructed from the knowledge of partially over-determined boundary data. The proposed approach is based on the so-called energy-like error functional combined with the topological sensitivity method. The topological derivative of the energy-like misfit functional is computed through the topological-shape sensitivity method. Firstly, the shape derivative of the corresponding misfit function is presented. Then, an explicit solution of the fundamental boundary-value problem in the infinite plane with a circular hole is calculated by the Muskhelishvili formulae. Finally, the asymptotic expansion of the topological gradient is derived explicitly with respect to the nucleation of a void. Numerical tests are performed in order to point out the efficiency of the developed approach.


Décroissance du nombre de zéros des solutions d'une équation parabolique

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2020 09:15-10:15 Lieu : Oratrice ou orateur : THOMAS GILETTI Résumé :

Résumé


Énergie d'une classe de solutions singulières du flot binormal

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Valeria Banica Résumé :

Le flot binormal est un modèle pour la dynamique d’un tourbillon filamentaire dans un fluide 3-D incompressible non-visqueux. Ce flot est également relié au modèle de Heisenberg continu classique, et à  l’équation de Schrödinger. Après avoir décrit ce modèle, je vais présenter une classe de solutions qui génèrent des singularités en temps fini. En particulier, je vais mettre en évidence une énergie conservée en temps sauf au moment de l’apparition des singularités, o๠elle présente un saut. Interprétée au niveau de la mécanique des fluides, cette énergie fait intervenir les grands modes de Fourier de la variation de la direction de vorticité. Il s’agit d’un travail en collaboration avec Luis Vega.


Analyse de l'interaction entre un fluide visqueux incompressible et une structure élastique

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 décembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Takéo Takahashi Résumé :

Nous étudions un système modélisant la dynamique d’une structure élastique immergée dans un fluide visqueux incompressible. Le mouvement du fluide est modélisé par les équations de Navier-Stokes et les déplacements élastiques suivent l’équation d’élasticité linéaire. Nous obtenons l’existence de solutions régulières locales en temps pour ce système.


Relaxation de problèmes de conception optimale couplant dérivée de forme et dérivée topologique.

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Samuel Amstutz Résumé :

Je présenterai un procédé général pour approcher un problème d’optimisation topologique de formes par un problème d’optimisation de densité. La construction repose sur l’utilisation d’un opérateur de régularisation (filtre) et d’un profil d’interpolation pour munir les régions de densité intermédiaire de propriétés spécifiques. Le résultat principal est que, sous certaines hypothèses et dans un certain sens, la dérivée de Fréchet du problème approché converge vers la dérivée de forme du problème initial sur la frontière du domaine et la dérivée topologique en dehors. Cela apporte un point de vue nouveau sur la construction de schémas d’interpolation consistants. Je présenterai différents algorithmes associés et les illustrerai par des exemples en optimisation de (micro)structures élastiques. J’aborderai également la prise en compte d’une pénalisation périmétrique afin de régulariser les domaines obtenus. Travail en collaboration avec C. Dapogny (LJK, Univ. Grenoble-Alpes) et A. Ferrer (CMAP, Ecole Polytechnique).


Schémas de bi-projection pour des écoulements visco-plastiques : application aux écoulements pyroclastiques

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Thierry Dubois Résumé :

Dans cet exposé, nous présenterons les schémas de bi-projection récemment développés pour la discrétisation en temps des équations de Navier-Stokes incompressibles isothermes avec une rhéologie visco-plastique (Bingham, Drucker-Prager). La difficulté principale, tant du point de vue de l’analyse mathématique que de l’approximation numérique, est due à  la non-différentiabilité de la partie plastique du tenseur des contraintes dans les régions de l’espace o๠le tenseur des déformations est nul. Une formulation basée sur une réécriture de la définition de la partie plastique du tenseur en terme d’une projection est utilisée. Un nouveau schéma de semi-discrétisation en temps, basé sur un schéma de projection incrémental classique pour les équations de Navier-Stokes dans le cas des fluides newtoniens, est proposé. Le tenseur plastique est traité en implicite dans l’étape de prédiction du schéma de projection et un algorithme de point fixe est utilisé pour son évaluation. Un terme de pseudo-relaxation temporel est ajouté dans la projection de Bingham afin d’assurer une convergence rapide (géométrique) du point fixe. Des analyses de stabilité et d’erreurs du schéma numérique ont été obtenues dans un premier travail dans le cas d’écoulements homogènes puis étendues au cas d’écoulements à  densité, viscosité et seuil de plasticité variables. Des résultats numériques d’écoulements dans une cavité entraînée 2D ainsi que d’instabilités de Rayleigh-Taylor seront présentés afin de montrer l’efficacité de la méthode de bi-projection. Enfin, des applications à  des écoulements géophysiques seront discutées.


Comportement des solutions d'équations de Hamilton-Jacobi diffusives

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Philippe Souplet Résumé :

Dans cet exposé, je passerai en revue un certain nombre de résultats récents sur les équations de Hamilton-Jacobi diffusives, de la forme $u_t-Delta u=|nabla u|^p+h(x)$. Ce type d’équations, qui interviennent en théorie du contrôle stochastique, mais aussi dans certains modèles de croissance de surface, donnent lieu à  une variété de comportements intéressant. Nous nous intéresserons en particulier à  deux classes de phénomènes: – Explosion du gradient: localisation des singularités au bord, explosion en seul point, vitesses d’explosion, profils en espace, estimations de type Bernstein, théorèmes de type Liouville et applications; – Continuation au sens de viscosité après l’explosion du gradient: solutions avec ou sans perte de conditions au bord, récupération des conditions au bord, régularisation.


Laplaciens Fractionnaires dans un ouvert borné

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2019 09:15-10:15 Lieu : Oratrice ou orateur : Maha Daoud Résumé :

Dans cet exposé, nous allons rappeler deux ou trois définitions du Laplacien fractionnaire dans $R^N$ qui sont toutes équivalentes. Puis nous montrons que chacune des définitions donne un « Laplacien fractionnaire » dans le cas d’un domaine ouvert borné de $R^N$. Enfin, nous présentons des simulations numériques pour illustrer la différence entre les « Laplaciens fractionnaires » les plus étudiés dans la littérature.


Quelques résultats de non-unicité pour le problème de Calderon anisotrope

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 22 novembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : François Nicoleau Résumé :

Le résumé se trouve ici


A multiscale approach to reaction-diffusion processes and elasticity in domains with microstructure

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 15 novembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Malte PETER Résumé :

Reaction-diffusion processes occur in many materials with microstructure such as biological cells, steel or concrete. The main difficulty in modelling and simulating accurately such processes is to account for the fine microstructure of the material. One method of upscaling multiscale problems, which has proven reliable for obtaining feasible macroscopic models rigorously, is the method of periodic homogenisation. The correct scaling of certain terms of the system with powers of the homogenisation parameter is an aspect particularly relevant in this context. The scaling arises from geometrical considerations or from the processes themselves. Depending on the particular choice of these scaling powers, different limit behaviours are obtained leading to different systems of equations in the homogenisation limit. This will first be discussed in the context of a reaction-diffusion system given in a two-component medium coupled by a Robin condition at the internal interface. The analogous vector-valued problem models two elastic materials coupled by a slip-displacement condition, which will be the focus of the second part of the talk.