Séminaires

Exposés à venir

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
 

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Anne-Sophie de Suzzoni (Polytechnique)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne-Siphie de Suzzoni (Polytechnique) Résumé :

Jérôme Le Rousseau (Université Paris Nord)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :

Anisa Chorwadwala (IISER, India)

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anisa Chorwadwala (IISER, India) Résumé :

Karol Bołbotowski (Université de Varsovie)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Karol Bołbotowski (Université de Varsovie) Résumé :

Viet Dang Nguyen (Université de Strasbourg)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Viet Dang Nguyen (Université de Strasbourg) Résumé :

Xavier Lamy (Université de Toulouse)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Lamy (Université de Toulouse) Résumé :

Archives

Inégalité de Faber-Krahn inverse pour le laplacien tronqué

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 avril 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Enea Parini (Aix-Marseille Université) Résumé :

Dans cet exposé on va s’intéresser à une inégalité de Faber-Krahn inverse pour la valeur propre fondamentale μ1(Ω) de l’opérateur complètement nonlinéaire

PN+u:=λN(D2u),

ΩRN est un ouvert borné et convexe, et λN(D2u) est la plus grande valeur propre de la matrice hessienne de u. On verra que le résultat découle de l’inégalité isopérimétrique

μ1(Ω)π2diam(Ω)2.

De plus, on va discuter de la minimisation de μ1 sous différents types de contraintes. Les résultats ont été obtenus en collaboration avec Julio D. Rossi et Ariel Salort (Buenos Aires).


Intégration convexe et solutions anomales d'EDP

Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 26 avril 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Reza Pakzad Résumé :

On présente d’abord un ensemble de résultats concernant les équations d’Euler en mécanique des fluides, les immersions isométriques, et l’équation de Monge-Ampère au sens très faible. Le but est de souligner dans chaque cas la présence d’une dichotomie, dépendant de la régularité des solutions, de flexibilité (c.-à-d. l’existence et l’abondance de solutions dites anomales) et de rigidité (c.-à-d. les propriétés restrictives des solutions ). Ensuite, on décrit les structures sous-jacentes communes à ces EDP vues comme des problèmes d’inclusions différentielles, qui nous permettent d’utiliser les méthodes du théorème de Baire et de l’intégration convexe pour établir les résultats d’existence, où on fait valoir les aspects fondamentaux de ces méthodes. À titre d’exemple, on décrit comment prouver l’existence de solutions anormales très faibles de régularité de Lipschitz à l’équation de Monge-Ampère, et comment améliorer cette approche pour trouver des solutions C^{1,α} pour α < 1/5 ; (la valeur critique de α pour une telle construction reste un problème ouvert).


Adaptation d'un pathogène à plusieurs hôtes: The third man

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 avril 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matthieu Alfaro (Université de Rouen Normandie) Résumé :

On considère un système de réaction-diffusion non locale décrivant l’adaptation d’un pathogène à H hôtes, chacun étant associé à un différent optimum phénotypique dans Rn. Le comportement en temps grand (persistance vs extinction) du problème de Cauchy associé est donné par le signe d’une valeur propre principale. Une grande partie de l’étude se concentre sur le cas H=3 (qui est très riche!). On compare notamment avec le cas H=2 et montre que la présence d’un troisième hôte peut favoriser ou entraver l’adaptation…


Journées EDP de l'IECL 2022

Catégorie d’évènement : Conférence Date/heure : 28 mars 2022 – 30 mars 2022 14:00-14:00 Lieu : Description

Les journées auront lieu du 28 au 30 mars 2022 à Nancy dans l’Amphi 7 (bâtiment Victor Grigard, site de la FST).

Vous trouverez plus d’informations en cliquant sur ce lien.


Séminaire : Phénomène de Lavrentiev en Calcul des Variations

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 25 mars 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bousquet Résumé :

Sur un ouvert Ω régulier, l’ensemble des fonctions lisses C(Ω) est dense dans les espaces de Sobolev W1,p(Ω) (avec 1p<). Pourtant, minimiser une fonctionnelle du calcul des variations sur C(Ω) ou sur W1,p(Ω) peut conduire à des résultats différents: c’est le phénomène de Lavrentiev.

Il s’agit dans cet exposé d’identifier une large classe de fonctionnelles pour laquelle ce phénomène ne se produit pas. La preuve repose sur de nouvelles techniques d’approximation pour des versions paramétriques des problèmes variationnels considérés.


La méthode de Lyapunov pour des solutions de systèmes de Réaction-Diffusion

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 22 mars 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Said Benachour (IECL) Résumé :

Quelques résultats sur l'équation de Hartree. Partie II : existence d'un état fondamental, cas général.

Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 22 mars 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérémy Faupin Résumé :

L’équation de Hartree est une équation de Schrödinger non linéaire utilisée notamment pour décrire l’évolution de certains systèmes quantiques à grand nombre de particules. Dans la deuxième partie on s’intéressera au problème de l’existence d’un état fondamental, c’est-à-dire l’existence d’un état minimisant la fonctionnelle d’énergie, dans un cadre général. L’approche pour résoudre ce problème de minimisation sous contrainte repose sur des arguments développés par Lions dans les années 80, de type concentration-compacité.


Séminaire : Structure spectrale de quelques opérateurs non auto-adjoints

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 18 mars 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nicolas Frantz Résumé :

Dans cet exposé, nous considérons un opérateur non-auto adjoint sur un espace de Hilbert de la forme H0+VH0 est un opérateur auto-adjoint et V est un opérateur borné à valeurs complexes. Nous supposons que la résolvante de H0 satisfait un principe d’absorption limite et nous définissons les singularités spectrales de H comme l’ensemble des points de son spectre essentiel tel que la résolvante de H ne satisfait pas le principe d’absorption limite. Nous montrons alors que les singularités spectrales de H sont en bijection avec des valeurs propres associées à des vecteurs propres spécifiques d’un prolongement de H à un espace de Hilbert plus gros. Dans un deuxième temps, nous montrons que les états qui disparaissent à l’infini pour H correspondent aux vecteurs propres généralisés de H associés à des valeurs propres de partie imaginaire négative. Enfin nous définirons le sous-espace spectral absolument continu de H et montrerons qu’il est égal à l’orthogonal de l’espace vectoriel engendré par tous les vecteurs propres généralisés de l’adjoint de H.


Problèmes de Schrödinger dynamiques: Gamma-convergence et convexité

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 mars 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Léonard Monsaingeon (GFMUL Lisbon) Résumé :

Le problème de Schrödinger (~1930) consiste à inférer la trajectoire d’un système de particules Browniennes, étant données les observations de ses distributions statistiques en un temps initial et terminal. Récemment des liens profonds avec le Transport Optimal ont été mis à jour, permettant de voir le problème de Schrödinger comme une version bruitée du problème déterministe du transport optimal classique (géodésiques dans l’espace de Wasserstein des mesures de probabilités). Le niveau de bruit est déterminé par un paramètre de température ε>0, et l’interpolation temporelle est pilotée énergétiquement parlant par l’entropie de Boltzmann. Dans la limite de petit bruit, il est bien connu que ce problème bruité Gamma-converge vers sa contrepartie déterministe, ce qui est remarquablement utile numériquement. Dans cet exposé je discuterai une extension naturelle à des problèmes de Schrödinger géométriques dans des espaces métriques abstraits. On peut établir dans ce cadre un résultat de Gamma-convergence très général, et je montrerai comment la preuve mène également à des nouveaux résultats de convexité.


Quelques résultats sur l'équation de Hartree. Partie I : existence d'un état fondamental.

Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 15 mars 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérémy Faupin Résumé :

L’équation de Hartree est une équation de Schrödinger non linéaire utilisée notamment pour décrire l’évolution de certains systèmes quantiques à grand nombre de particules. Dans la première partie, après avoir rappelé brièvement le contexte physique, on s’intéressera au problème de l’existence d’un état fondamental, c’est-à-dire l’existence d’un état minimisant la fonctionnelle d’énergie. L’approche pour résoudre ce problème de minimisation sous contrainte repose sur des arguments développés par Lions dans les années 80, de type concentration-compacité.