Exposés à venir
Séminaires d’équations aux dérivées partielles à Metz et Nancy
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Viviana Grasselli (Metz), Camille Labourie (Nancy), Dominik Stantejsky (Nancy) et Alessandro Duca (Nancy).
Régularité d'un problème à frontière libre d'ordre 4
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 décembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.
C’est un travail en collaboration avec Jimmy Lamboley.
Séminaire: Uniform controllability for metastable systems
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :Romeo LEYLEKIAN
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :Séminaire: titre à venir
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 9 janvier 2026 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Annamaria Massimini (CERMICS) Résumé :Résumé à venir
Laure GIOVANGIGLI
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :Séminaire: titre à venir
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 janvier 2026 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nicolas Frantz (LAREMA) Résumé :Résumé à venir
Lucas COEURET
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :Séminaire: titre à venir
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 23 janvier 2026 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Lucas Coeuret (IECL) Résumé :Résumé à venir
Marc PEGON
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :Séminaire: titre à venir
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 30 janvier 2026 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Clémentine Courtès (IRMA) Résumé :Résumé à venir
Nicolas VANSPRANGHE
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :Benoit MERLET
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :Camille LAURENT
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :Archives
Ludovick Gagnon – (Reporté pour mouvement social du 7 Mars)
Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 28 février 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ludovick Gagnon Résumé :TBA
Estimations fines pour des applications du type impédance-vers-impédance associées à l'équation de Helmholtz, et application à des méthodes de décomposition de domaine avec recouvrement
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 février 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David Lafontaine (Université de Toulouse) Résumé :Nous nous intéresserons à une méthode de décomposition de domaine avec recouvrement pour l’équation de Helmholtz à hautes fréquences – il s’agit de la méthode avec recouvrement classique due à Schwarz mais utilisée ici avec des conditions au bord absorbantes du type impédance sur les bords des sous-domaines. Nos travaux [Gong-Gander-Graham-Lafontaine-Spence] ont relié la convergence d’une telle méthode aux normes de certaines applications du type impédance-vers-impédance et de leurs itérées, applications qui à une donnée du type impédance sur un bord du domaine associent la trace du type impédance sur l’autre bord du domaine de la solution de Helmholtz associée. Je présenterai des bornes fines sur de telles applications dans la limite des hautes fréquences, et leurs conséquences sur l’étude de la méthode de décomposition de domaine correspondante. Travail en collaboration avec Euan Spence.
Séminaire : Régularité $C^1$ pour les minimiseurs de la fonctionnelle de Griffith
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 février 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antoine Lemenant Résumé :La problème de Griffith est un problème à « discontinuité libre » qui intervient dans un modèle de propagation de fissure en élasticité linéarisée. Il s’agit d’une variante vectorielle de la célèbre fonctionnelle de Mumford-Shah, correspondant au cas scalaire et pour laquelle la régularité des minimiseurs est bien connue depuis les années 90. L’analogue vectoriel (Griffith) est beaucoup plus difficile à appréhender en raison de problèmes techniques que l’on tentera d’expliquer. Ensuite on présentera certains résultats partiels de régularité $C^1$ qui ont été obtenus récemment en collaboration avec Jean-François Babadjian (Paris-Saclay) et Flaviana Iurlano (Sorbonne Université) en dimension $2$, puis généralisés en dimension supérieure en collaboration avec Camille Labourie (Erlangen-Nuremberg).
(Annulé et reporté) Clotilde Fermanian
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 février 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Clotilde Fermanian (Université Paris-Est) Résumé :Groupe de travail : Factorisation orthogonale d'une matrice par blocs sous une forme échelonnée spéciale, et applications (suite)
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 3 février 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Baptiste Bellet Résumé :Dans cet exposé, on présente une factorisation orthogonale d’une matrice sous une certaine forme échelonnée, avec un algorithme itératif associé. Cette factorisation, dédiée aux matrices par blocs, réalise un compromis entre la méthode du pivot de Gauss qui échelonne, et la décomposition en valeurs singulières qui diagonalise par transformations orthogonales. On montrera des applications en interpolation (publiées récemment avec J.-P. Croisille et M. Brachet), ainsi que des applications en optimisation multi-critère (si le temps le permet).
(Annulé et reporté) T-coercivity: a practical tool for the study of variational formulations
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 31 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Patrick Ciarlet (ENSTA) Résumé :Variational formulations are a popular tool to analyse linear PDEs (eg. neutron
diffusion, Maxwell equations, Stokes equations …), and it also provides a
convenient basis to design numerical methods to solve them. Of paramount
importance is the inf-sup condition, designed by Ladyzhenskaya, Necas,
Babuska and Brezzi in the 1960s and 1970s. As is well-known, it provides
sharp conditions to prove well-posedness of the problem, namely existence
and uniqueness of the solution, and continuous dependence with respect to the
data. Then, to solve the approximate, or discrete, problems, there is the
(uniform) discrete inf-sup condition, to ensure existence of the approximate
solutions, and convergence of those solutions to the exact solution. Often, the
two sides of this problem (exact and approximate) are handled separately, or at
least no explicit connection is made between the two.
In this talk, I will focus on an approach that is completely equivalent to the
inf-sup condition for problems set in Hilbert spaces, the T-coercivity
approach. This approach relies on the design of an explicit operator to realize
the inf-sup condition. If the operator is carefully chosen, it can provide useful
insight for a straightforward definition of the approximation of the exact
problem. As a matter of fact, the derivation of the discrete inf-sup condition
often becomes elementary, at least when one considers conforming methods,
that is when the discrete spaces are subspaces of the exact Hilbert spaces. In
this way, both the exact and the approximate problems are considered,
analysed and solved at once.
In itself, T-coercivity is not a new theory, however it seems that some of its
strengths have been overlooked, and that, if used properly, it can be a simple,
yet powerful tool to analyse and solve linear PDEs. In particular, it provides
guidelines such as, which abstract tools and which numerical methods are the
most “natural” to analyse and solve the problem at hand. In other words, it
allows one to select simply appropriate tools in the mathematical, or
numerical, toolboxes. This claim will be illustrated on classical linear PDEs,
and for some generalizations of those models.
Groupe de travail : Factorisation orthogonale d'une matrice par blocs sous une forme échelonnée spéciale, et applications
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 27 janvier 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Baptiste Bellet Résumé :Dans cet exposé, on présente une factorisation orthogonale d’une matrice sous une certaine forme échelonnée, avec un algorithme itératif associé. Cette factorisation, dédiée aux matrices par blocs, réalise un compromis entre la méthode du pivot de Gauss qui échelonne, et la décomposition en valeurs singulières qui diagonalise par transformations orthogonales. On montrera des applications en interpolation (publiées récemment avec J.-P. Croisille et M. Brachet), ainsi que des applications en optimisation multi-critère (si le temps le permet).
Existence globale pour un modèle de chimiotactisme avec interaction locale
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Philippe Laurençot (Université de Savoie) Résumé :L’existence globale de solutions classiques est étudiée pour un modèle de chimiotactisme basé sur des interactions locales individu/signal et incluant une mobilité décroissante quand l’intensité du signal augmente. Contrairement au modèle classique de chimiotactisme de Keller-Segel, on montre qu’il n’y a pas d’explosion en temps fini. On identifie de plus une classe de mobilités pour lesquelles les solutions sont bornées (collaborations avec Jie Jiang, Wuhan et Yanyan Zhang, Shanghai).
Mickaël Nahon (Institut Max Planck)
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :Frédéric Robert – Instabilité pour des équations elliptiques de type courbure scalaire
Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 17 janvier 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Frédéric Robert Résumé :L’équation de courbure scalaire dans une classe conforme est une EDP elliptique non-linéaire d’ordre 2. La nonlinéarité est critique du point de vue des plongements de Sobolev. L’invariance conforme et cette criticalité rendent cette équation non-compacte, au sens où l’ensemble de ses solutions n’est pas compact dans C^2. Cette non-compacité perdure pour des perturbations de l’équation, et on parle alors d’instablité. Dans ces exposés, je parlerai des diverses description de cette instabilité pour cette équation ainsi que pour des classes plus large de problèmes, en particulier d’ordre >2.