Séminaires d’équations aux dérivées partielles à Metz et Nancy
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).
Exposés à venir
Controllability of some wave equations
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.
Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).
En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.
Hugo Parada (Université de Toulouse)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :Dominik Stantejsky
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :TBA
Lorenzo Lamberti (IECL)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :Dominik Stantejsky
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :TBA
Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.
Travail en collaboration avec Hannes Kern (TU Berlin).
Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Ngoc Nhi Nguyen (Université de Milan)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Idriss Mazari (Université Paris-Dauphine)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :Raphaël Côte (Université de Strasbourg)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :Didier Bresch (Université de Savoie)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :Pierre Rouchon (Mines Paris)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :Archives
Groupe de travail : Factorisation orthogonale d'une matrice par blocs sous une forme échelonnée spéciale, et applications
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 27 janvier 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Baptiste Bellet Résumé :Dans cet exposé, on présente une factorisation orthogonale d’une matrice sous une certaine forme échelonnée, avec un algorithme itératif associé. Cette factorisation, dédiée aux matrices par blocs, réalise un compromis entre la méthode du pivot de Gauss qui échelonne, et la décomposition en valeurs singulières qui diagonalise par transformations orthogonales. On montrera des applications en interpolation (publiées récemment avec J.-P. Croisille et M. Brachet), ainsi que des applications en optimisation multi-critère (si le temps le permet).
Existence globale pour un modèle de chimiotactisme avec interaction locale
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Philippe Laurençot (Université de Savoie) Résumé :L’existence globale de solutions classiques est étudiée pour un modèle de chimiotactisme basé sur des interactions locales individu/signal et incluant une mobilité décroissante quand l’intensité du signal augmente. Contrairement au modèle classique de chimiotactisme de Keller-Segel, on montre qu’il n’y a pas d’explosion en temps fini. On identifie de plus une classe de mobilités pour lesquelles les solutions sont bornées (collaborations avec Jie Jiang, Wuhan et Yanyan Zhang, Shanghai).
Mickaël Nahon (Institut Max Planck)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :Frédéric Robert - Instabilité pour des équations elliptiques de type courbure scalaire
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 17 janvier 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Frédéric Robert Résumé :L’équation de courbure scalaire dans une classe conforme est une EDP elliptique non-linéaire d’ordre 2. La nonlinéarité est critique du point de vue des plongements de Sobolev. L’invariance conforme et cette criticalité rendent cette équation non-compacte, au sens où l’ensemble de ses solutions n’est pas compact dans C^2. Cette non-compacité perdure pour des perturbations de l’équation, et on parle alors d’instablité. Dans ces exposés, je parlerai des diverses description de cette instabilité pour cette équation ainsi que pour des classes plus large de problèmes, en particulier d’ordre >2.
Une approximation volumes finis pour une équation de convection-diffusion avec terme d'effet Joule
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Creusé (Université de Valenciennes) Résumé :Dans cet exposé, nous nous intéressons à une équation de convection-diffusion avec un terme non linéaire en gradient de température appelé terme « d’effet Joule ». Une méthode de volumes finis est proposée pour l’approximation numérique de la solution, dont la convergence vers une solution faible est démontrée. Nous établissons en particulier une inégalité discrète de Gagliardo-Nirenberg d’ordre deux sur laquelle la preuve s’appuie. Ce travail a été réalisé en collaboration avec Caterina Calgaro et Clément Cancès.
Frédéric Robert - Instabilité pour des équations elliptiques de type courbure scalaire
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 10 janvier 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fréréic Robert Résumé :L’équation de courbure scalaire dans une classe conforme est une EDP elliptique non-linéaire d’ordre 2. La nonlinéarité est critique du point de vue des plongements de Sobolev. L’invariance conforme et cette criticalité rendent cette équation non-compacte, au sens où l’ensemble de ses solutions n’est pas compact dans C^2. Cette non-compacité perdure pour des perturbations de l’équation, et on parle alors d’instabilité. Dans ces exposés, je parlerai des diverses description de cette instabilité pour cette équation ainsi que pour des classes plus large de problèmes, en particulier d’ordre >2.
Séminaire : Le système de Vlasov-Navier-Stokes avec absorption : pénalisation visqueuse ?
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 janvier 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Ayman Moussa Résumé :Le système de Vlasov-Navier-Stokes est un couplage fluide/cinétique décrivant l’évolution d’un aérosol au sein d’un fluide. Dans le contexte de l’aérosolthérapie, l’absorption est la condition aux bords la plus adéquate pour la phase dispersée, en raison de la présence de mucus sur les voies aériennes pulmonaires. En gardant ce cadre applicatif à l’esprit, on s’interrogera sur la possibilité de récupérer cette condition au bord par l’étude du même système dans tout l’espace, dans une limite (localisée) de grande viscosité, en utilisant la théorie des traces renormalisées de Boyer-Mischler pour les équations de transport.
Paul Alphonse (ENS Lyon)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 janvier 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Paul Alphonse (ENS Lyon) Résumé :Rencontre GDR - Calva "Théorie de la mesure géométrique et Calcul des variations"
Catégorie d'évènement : Conférence Date/heure : 13 décembre 2022 - 14 décembre 2022 00:00-00:00 Lieu : DescriptionRencontre GDR-Calva à Nancy 13-14 décembre 2022
Site de la rencontre : https://indico.math.cnrs.fr/event/8364/page/567-accueil
Organisateurs: Antoine Lemenant (Nancy), Reza Pakzad (Toulon)
Gestion administrative: Virginie Lamouroux (Nancy), Valérie Gobert (Nancy)
Pour toute question veuillez contacter : Antoine.Lemenant@univ-lorraine.fr
Liste des orateurs :
Jean-François Babadjian (Paris-Saclay)
Antonin Chambolle (Paris-Dauphine)
Gisella Croce (Le Havre)
Thierry De Pauw (Paris)
Guy David (Paris Saclay)
Michael Goldman (Paris)
Ilaria Lucardesi (Florence)
Exposés courts :
Jules Candau-Tilh (Lille-Paris)
Peter Gladbach (Bonn)
Camille Labourie (Erlangen-Nuremberg)
Yana Teplitskaya (Leiden)
Groupe de travail : Interpolation et approximation sur la grille "Cubed Sphere" équiangulaire
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 9 décembre 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Pierre Croisille Résumé :L’interpolation et l’approximation de fonctions définies sur la sphère sont des questions classiques en analyse harmonique et en analyse numérique.
Elles interviennent de façon essentielle dans de nombreux domaines en physique et en chimie: climatologie sur la sphère terrestre, chimie quantique, neutronique, analyse des données sur la sphère, etc.
On présente ici un algorithme de calcul en harmoniques sphériques associé à une grille sphérique particulière, la « Cubed Sphere » équiangulaire.
Différentes applications seront également présentées, dont des formules de quadrature sphériques.
Il s’agit d’un travail avec Jean-Baptiste Bellet et Matthieu Brachet.