Séminaires

Exposés à venir

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
 

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Viviana Grasselli (Metz), Camille Labourie (Nancy), Dominik Stantejsky (Nancy) et Alessandro Duca (Nancy).

Séminaire: Convection-dominated transport problems in thin graph-like networks

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel’nyk Résumé :

The lecture addresses time‑dependent convection–diffusion problems with high Péclet number in thin 3D graph‑like networks of curvilinear cylinders connected by nodes of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Robin boundary conditions with different intensity factors are imposed on the network boundary. As $\varepsilon \rightarrow 0,$ the network collapses to a graph and the diffusion terms vanish.

Such problems pose singular‑perturbation challenges that standard methods often cannot resolve. I present a systematic asymptotic framework for $\varepsilon \rightarrow 0,$ combining regular expansions on edges with node‑layer and boundary‑layer asymptotics to capture the multiscale flow structure. The analysis justifies reduced graph models, quantifies higher‑order corrections, and uncovers new phenomena in singular regimes.


Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 décembre 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :

Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives


Régularité d'un problème à frontière libre d'ordre 4

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 décembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :

Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.

C’est un travail en collaboration avec Jimmy Lamboley.


Séminaire: titre à venir

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :

Résumé à venir


Romeo LEYLEKIAN

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :

Laure GIOVANGIGLI

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :

Lucas COEURET

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :

Marc PEGON

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :

Nicolas VANSPRANGHE

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :

Benoit MERLET

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :

Camille LAURENT

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :

Archives

Mouvement par courbure moyenne, réseaux de neurones et applications

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 novembre 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Elie Bretin (INSA Lyon) Résumé :

De nombreuses applications en traitement d’images (débruitage, segmentation), en science des données (lissage de nuages de points, associations de formes), en sciences des matériaux (évolution des grains dans les alliages, croissance des cristaux) ou en biologie (modélisation cellulaire) nécessitent l’approximation de l’évolution d’interfaces géométriques telles que l’emblématique mouvement par courbure moyenne.
Dans ce contexte, la méthode des champs de phase est un outil particulièrement efficace pour approcher
l’évolution des surfaces orientées, mais les choses se révèlent beaucoup plus difficiles pour les surfaces non orientées.
Dans cet exposé, nous expliquerons comment approcher de telles évolutions en entraînant des réseaux de neurones dont les structures dérivent des schémas classiques de discrétisation de l’équation d’Allen Cahn.
Des applications numériques aux problèmes de Steiner et de Plateau seront aussi proposées.


Antoine Henrot – Sur trois conjectures de Pólya

Catégorie d’évènement : Équations aux dérivées partielles Date/heure : 7 novembre 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antoine Henrot Résumé :

Dans ces deux exposés, je parlerai de trois conjectures de Pólya qui sont toujours ouvertes.
Les deux premières sont très connues et concernent les valeurs propres du Laplacien, la 3ème est beaucoup
moins connue et est dans le domaine de la géométrie convexe.
Je présenterai des avancées récentes sur ces trois conjectures faisant appel à des techniques très différentes


Can quasi-static evolutions of perfect plasticity be derived from brittle damage evolutions?

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 octobre 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Elise Bonhomme (Université Paris-Saclay) Résumé :

This talk addresses the question of the interplay between relaxation and irreversibility through
evolution processes in damage mechanics, by inquiring the following question: can the quasi-static
evolution of an elastic material undergoing a process of plastic deformation be derived as the limit
model of a sequence of quasi-static brittle damage evolutions?
This question is motivated by the static analysis led in [1], where the authors have shown
how the brittle damage model introduced by Francfort and Marigo (see [4]) can lead to a model
of (Hencky) perfect plasticity. Problems of damage mechanics being rather described through
evolution processes, it is natural to extend this analysis to quasi-static evolutions, where the inertia
is neglected. We consider the case where the medium is subjected to time-dependent boundary
conditions, in the one-dimensional setting. The idea is to combine the scaling law introduced in [1]
with the quasi-static brittle damage evolution introduced in [3] by Francfort and Garroni, and try
to understand how the irreversibility of the damage process will be expressed in the limit evolution.
Surprisingly, the interplay between relaxation and irreversibility of the damage is not stable
through time evolutions. Indeed, depending on the choice of the prescribed Dirichlet boundary
condition, the effective quasi-static damage evolution obtained may not be of perfect plasticity
type.
References:
[1] J.-F. Babadjian, F. Iurlano, F. Rindler: Concentration versus oscillation effects in brittle damage, Comm.
Pure Appl. Math. 74 (2021) 1803–1854.
[2] G. Dal Maso, A. DeSimone, M. G. Mora: Quasistatic evolution problems for linearly elastic-perfectly plastic
materials, Arch. Ration. Mech. Anal. 180 (2006) no. 2, 237–291.
[3] G. A. Francfort, A. Garroni: A Variational View of Partial Brittle Damage Evolution, Arch. Rational
Mech. Anal 182 (2006) 125–152.
[4] G. A. Francfort, J.-J. Marigo: Revisiting brittle fracture as an energy minimization problem, J. Mech.
Phys. Solids 46 (1998) 1319–1342.


Séminaire : De l'équation de Schrödinger au système d'Euler-Korteweg

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 20 octobre 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Corentin Audiard (LJLL, Sorbone Université, Paris) Résumé :

Le système d’Euler-Korteweg (compressible) est une perturbation dispersive des équations d’Euler modélisant les effets de la capillarité. Il peut se voir comme une équation de Schrödinger quasilinéaire dégénéré, et dans certains cas particuliers, est équivalent à l’équation de Schrödinger non linéaire via un changement de variable, la transformation de Madelung.
On discutera dans cet exposé de quelques résultats sur la dynamique des solutions que cette analogie laisse espérer (soliton, scattering, limite « semi classique »), certains étant maintenant des théorèmes.


Approximation des solutions d’un système d’edp semi-classiques en présence de croisements réguliers

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 octobre 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Clotilde Fermanian Résumé :

Dans cet exposé, on discutera un résultat récent obtenu en collaboration avec Caroline Lasser et Didier Robert.

Il s’agit de la construction d’approximations du propagateur associé à un opérateur de Schrödinger semi-classique matriciel.

La méthode utilisée repose sur l’utilisation de paquets d’onde gaussiens et notre résultat justifie les méthodes numériques de « multiple spawning » utilisées en chimie quantique.


Le comportement de la fonction propre associée à la première valeur propre du Laplacien-Dirichlet

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 octobre 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Saïd Bénachour (IECL) Résumé :

Séminaire : On Regularization of Mirror Sweeping Process

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 septembre 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Emilio Vilches (Universidad de O’Higgins, Rancagua, Chile) Résumé :

The Mirror Sweeping Process is a constrained differential Inclusion involving a normal cone to a moving set.
In this talk, we present the well-posedness theory for this dynamical system under different sets of assumptions. We also discuss some applications to online optimization and possible extensions to other fields.


A model of superfluidity with temperature effects

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 septembre 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Reika Fukuizumi (Université de Waseda) Résumé :

On the asymptotic stability of solitons for 1D models

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 septembre 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yvan Martel (Université de Versailles Saint-Quentin-en-Yvelines) Résumé :

Existence of solutions to the fractional Vlasov-Poisson-Fokker-Planck equation via commutator estimates

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 juin 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ivan Moyano (Nice) Résumé :

We study the existence of solutions to a kinetic system
describing the dynamics of a large number of particles undergoing the
effect of a self-generated field (electrical or gravitational) and the
action of random jumps in velocity according to a $2\sigma$-stable
Poisson process. The evolution of the corresponding system can be seen
as a fractional version of the classical Valsov-Poisson-Fokker-Planck
systems in which the dissipating part is described by a fractional
Laplacian. We address the question of local existence in time of mild
solutions for this system in all natural ranges $0 < \sigma < 1$ thanks
to the use of commutator estimates à la Kato-Ponce. We also investigate
the possibility of propagating the lifespan of these solutions in the
range $\frac{1}{2} < \sigma < 1$ and get global solutions in a natural
weighted $L^2$ space, which is possible thanks to the use of fundamental
solutions combined with an approach due to Bouchut (\emph{J. Funct.
Analysis} Vol 111(1) 1993 pp 239-258.).


8 9 10 11 12 13 14 15 16 17 18 19