Séminaires

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Exposés à venir

Controllability of some wave equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :

In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.


Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Archives

Comportement en temps long d'équations paraboliques sur la droite réelle

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 décembre 2020 10:45-11:45 Lieu : Oratrice ou orateur : Antoine Pauthier Résumé :

On considère l’équation de la chaleur semi-linéaire sur la droite réelle. Si la solution est bornée, alors elle est globale et lisse, et l’ensemble des profils limite est non vide, connexe. Il est naturel de se demander dans quelle mesure ces profils limites, et donc le comportement en temps long de la solution, sont déterminés par les solutions stationnaires de l’équation. Si par exemple la solution est convergente, alors son ensemble omega-limite est réduit à  un singleton, solution stationnaire de l’équation. La convergence n’est en revanche pas une propriété générique de ces équations, mais si tous les profils limites sont solutions stationnaires on parlera alors de quasiconvergence. Dans ce séminaire je présenterai quelques résultats de quasiconvergence dans le cas o๠la condition initiale admet des limites à  l’infini. En particulier, dans la situation générique o๠les limites à  l’infini sont distinctes, toute solution bornée est quasiconvergente, indépendamment du terme non linéaire. Dans un second temps, on s’intéresse à  la situation de limites égales. Un résultat similaire est impossible, des contre-exemples ayant été donnés. On montre alors que, dans une certaine mesure, les contreexemples connus sont les seules situations de non quasiconvergence.


De l'adhérence au glissement en nanofluidique : une justification mathématique basée sur une chute de la viscosité au voisinage des parois

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 novembre 2020 10:45-11:45 Lieu : Oratrice ou orateur : Matthieu Bonnivard Résumé :

Dans les modèles d’écoulement d’un fluide visqueux en contact avec par des parois solides, la condition d’adhérence (qui impose que la vitesse du fluide coïncide avec la vitesse de la paroi le long de celle-ci) est la plus communément employée. Cette condition empirique est satisfaisante pour des écoulements à  échelle macroscopique. Cependant, elle devient imprécise à  des échelles très petites, comme par exemple dans le cas d’écoulement dans des nanotubes de carbone, o๠de nombreuses expériences ont mesuré un glissement du fluide sur la paroi. Ce glissement est généralement modélisé par une condition de Navier, qui introduit un paramètre appelé longueur de glissement. De nombreuses hypothèses sont actuellement étudiées pour expliquer l’origine de ce glissement apparent, et obtenir des longueurs de glissement cohérentes avec celles mesurées expérimentalement. L’une d’entre elles est la présence au voisinage de la paroi d’une couche de gaz extrêmement fine réduisant la friction entre le fluide et la paroi. Suivant les travaux de Tim G. Myers (Centre for mathematical research, Barcelona), nous proposerons dans cet exposé un modèle simplifié dans lequel la couche gazeuse est caractérisée par sa viscosité beaucoup plus faible que dans le reste du fluide. En partant d’une condition d’adhérence sur la paroi, nous montrerons que pour un certain choix du rapport des viscosités, le problème limite obtenu lorsque l’épaisseur de la couche gazeuse tend vers zéro est effectivement régi par une condition de Navier. Ce travail est en collaboration avec Julien Olivier (Aix-Marseille Université).


A nonlinear Schrödinger equation with fractional noise

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 novembre 2020 11:00-12:00 Lieu : Oratrice ou orateur : Nicolas Schaeffer Résumé :

The aim of this talk is to study a stochastic Schrödinger equation with a quadratic nonlinearity and a space-time fractional perturbation, in space dimension $dleq 3$. When the Hurst index is large enough, we will prove local well-posedness of the problem using classical arguments. I will briefly talk about the case where we deal with a small Hurst index since even the interpretation of the equation needs some care. A renormalization procedure must come into the picture, leading to a Wick-type interpretation of the model. Our fixed-point argument then involves some specific regularization properties of the Schrödinger group, which allows us to cope with the strong irregularity of the solution. This is a joint work with Aurélien Deya and Laurent Thomann.


Contrôle, stabilité et problèmes inverses pour les systèmes à retard et les réseaux : une contribution mathématique et numérique

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 4 novembre 2020 10:00-11:00 Lieu : Oratrice ou orateur : Julie Valein Résumé :

Les isometries de régularité très faible et quelques problèmes d'analyse non-linéaire

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 novembre 2020 10:45-11:45 Lieu : Oratrice ou orateur : Mohammad Reza Pakzad Résumé :

On considère une question étroitement liée à  une conjecture de Gromov: A quel seuil de régularité les immersions isométriques des domaines de $mathbb R^2$ dans $mathbb R^3$ sont développables? On cherche la réponse dans les régimes de Hölder $C^{1,s}$ ou plus généralement de Sobolev fractionnel $W^{1+s, p}$. Des bornes supérieures pour la valeur de seuil de $s$ sont classiquement obtenues par la méthode de l’integration convexe. Pour trouver les bornes inférieures, on définit une seconde forme fondamentale pour l’isométrie en question et on démontre qu’elle est une solution faible du système d’EDP de Gauss-Codazzi si $s>2/3$. L’analyse menant à  une démonstration de cette rigidité passe alors à  une discussion des solutions non-convexes et très faibles de l’équation de Monge-Ampère, et aux problèmes liés au déterminant de jacobien distributionnel.


Shape Optimisation Problems Around the Geometry of Branchiopod Eggs

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 29 octobre 2020 10:30-11:30 Lieu : Oratrice ou orateur : Alexandre Delyon Résumé :

Singular limit for reactive diffusive transport through an array of thin channels in case of critical diffusivity

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 octobre 2020 11:00-12:00 Lieu : Oratrice ou orateur : Maria Neuss-Radu Résumé :

We consider a nonlinear reaction–diffusion equation in a domain consisting of two bulk regions connected via small channels periodically distributed within a thin layer. The height and the thickness of the channels are of order $epsilon$, and the equation inside the layer depends on the parameter $epsilon$. We consider the critical scaling of the diffusion coefficients in the channels and nonlinear Neumann-boundary condition on the channels’ lateral boundaries. We derive effective models in the limit $epsilon to 0 $, when the channel-domain is replaced by an interface $Sigma$ between the two bulk-domains. Due to the critical size of the diffusion coefficients, we obtain jumps for the solution and its normal fluxes across $Sigma$, involving the solutions of local cell problems on the reference channel in every point of the interface $Sigma$. This is a joint work with Markus Gahn (University of Heidelberg)


Existence globale pour une classe de systèmes de réaction-diffusion avec des données initiales peu régulières

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 octobre 2020 10:45-11:45 Lieu : Oratrice ou orateur : El Haj Laamri Résumé :

Durant les 40 dernières années, des efforts considérables ont été consacrées à  l’étude des systèmes de réaction-diffusion avec des données initiales bornées ou de carré intégrable, et avec des non-linéarités au plus quadratiques. En revanche, on en sait relativement peu dans le cas o๠les données initiales sont de faible régularité et les non-linéarités sont à  croissance super-quadratique. Dans cet exposé, nous présentons une nouvelle estimation a priori avec des données initiales dans L1 qui étend l’estimation a priori L2 de Michel Pierre. Ensuite, nous expliquons comment cette estimation a priori L1 nous permet : de simplifier la preuve de certains résultats récents ; d’établir de nouveaux résultats d’existence pour des systèmes o๠les non-linéarités sont super-quadratiques. L’exposé repose sur un travail récent avec Benoit Perthame et sur un papier avec Michel Pierre.


EDP sur domaines polyédriques

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 9 octobre 2020 11:00-12:00 Lieu : Oratrice ou orateur : Victor Nistor Résumé :

Cet expose sera une introduction aux quelques résultats basiques pour les équations aux dérivées partielles sur domaine polyédrique. Par exemple, il est bien connu due aux travaux de Costabel, Dauge, Kondratiev, Mazya, Nicaise et d’autres que les solutions des équations elliptiques sur domaines non lisses souffrent d’une « perte de régularité. » Une question naturelle est qu’est-ce qu’on peut faire pour soulager ce problème, qui cause des ennuis pour les méthodes numériques. Les résultats que je vais exposer aident à  résoudre certains aspects de ce problème. L’exposé sera assez informel et basique.


Liouville type results for a nonlocal obstacle problem

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 mars 2020 10:45-11:45 Lieu : Oratrice ou orateur : Julien Brasseur Résumé :

My talk will be devoted to the qualitative properties of some nonlocal reaction-diffusion equations set on “perforated » open sets. One of the cornerstones in the study of this type of problem lies in suitable rigidity results of Liouville-type, which allow the classification of stationary solutions. I will give some results in this direction, under some geometric assumptions on the domain. This talk is based on some joint works with J. Coville, F. Hamel and E. Valdinoci.