Séminaires

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Exposés à venir

Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Archives

Sobolev solutions of parabolic equation in a complete riemannian manifold

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 27 septembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Éric Amar Résumé :

We study Sobolev estimates for the solutions of parabolic equations acting on a vector bundle, in a complete, compact or non compact, riemannian manifold $M$. The idea is to introduce geometric weights on $M$. We get global Sobolev estimates with these weights. As applications, we find and improve « classical results », i.e. results without weights, by use of a Theorem by Hebey and Herzlich. As an example we get Sobolev estimates for the solutions of the heat equation on $p$-forms when the manifold has « weak bounded geometry  » of order $1$.


Hardy-Sobolev inequalities with singularities on non smooth boundary

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 28 juin 2019 11:00-12:00 Lieu : Oratrice ou orateur : Hussein Cheikh Ali Résumé :

Le résumé se trouve ici


Uncertainty Quantification for Inverse Problems Governed by PDEs

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 juin 2019 10:45-11:45 Lieu : Oratrice ou orateur : Mark Asch Résumé :

Résumé


La méthode LS-STAG avec schéma diamant pour l'approximation de la diffusion : une méthode cut-cell précise et efficace pour les écoulements 3D incompressibles

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 juin 2019 11:00-12:00 Lieu : Oratrice ou orateur : Brice Portelenelle Résumé :

La méthode LS-STAG est une méthode cartésienne pour le calcul d’écoulements incompressibles en géométries complexes, qui propose une discrétisation précise des équations de Navier-Stokes dans les cut-cells, cellules polyédriques de forme complexe créées par l’intersection du maillage cartésien avec la frontière du solide immergé. Originalement développée pour les géométries 2D, o๠seuls trois types de cut-cells génériques sont présents, son extension aux géométries 3D se heurte au défi posé par le grand nombre de types de cut-cells (108) à  considérer. Cet exposé présentera une discrétisation plus précise du gradient dans les termes diffusifs de Navier-Stokes, à  l’aide du schéma diamant, ainsi que l’extension aux géométries 3D complètes par l’élaboration d’une formule générique de discrétisation spatiale dans les cut-cells, indépendante de la forme de celles-ci.


Régularité partielle anisotropique des équations de Navier-Stokes

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 juin 2019 10:45-11:45 Lieu : Oratrice ou orateur : Mohammed Ziane Résumé :

Résumé


Stabilisation en temps fini pour des équations paraboliques

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 juin 2019 11:00-12:00 Lieu : Oratrice ou orateur : Rémi Buffe Résumé :

Dans cet exposé, je présenterai le lien entre l’existence d’une inégalité de type Lebeau-Robbiano pour un opérateur autoadjoint à  résolvante compacte, et le contrôle impulsionnel de l’équation parabolique associée. Je présenterai ensuite une construction d’une loi de feedback donnant un résultat de stabilisation en temps fini. C’est un travail en collaboration avec Kim Dang Phung.


Estimation d'erreur a posteriori et critères d'arrêt pour une méthode de décomposition de domaines globale en temps

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 mai 2019 10:45-11:45 Lieu : Oratrice ou orateur : Michel Kern Résumé :

La modélisation du piégeage capillaire (un fluide reste confiné dans une région du sous-sol) conduit à  une équation de diffusion non-linéaire dégénérée dans laquelle le coefficient de diffusion est discontinu à  travers une interface. Le problème peut-être résolu par une méthode de décomposition de domaines globale en temps, basée sur l’algorithme de relaxation d’onde de Schwarz, avec des conditions de transmission non-linéaires de type Robin à  travers l’interface. Dans chaque sous-domaine, un problème en est résolu sur tout l’intervalle de temps à  chaque itération, avant l’utilisation des conditions de transmission. L’arrêt des itérations utilise un critère construit à  partir d’estimateurs d’erreurs a posteriori, distinguant les erreurs de discrétisation en espace, en temps et l’erreur due à  la décomposition de domaines. Ces estimateurs reposent sur la reconstruction de champs de pression et de flux conformes. Les itérations de décomposition de domaines peuvent ainsi être arrêtées dès que l’erreur de DD est inférieure aux erreurs de discrétisation.


Le mouvement brownien comme ligne caractéristique en moyenne de l'équation de la chaleur

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 mai 2019 09:15-10:15 Lieu : Oratrice ou orateur : Kolehe Coulibaly-Pasquier Résumé :

Résumé


Stabilisation par retour de sortie : cas d'un système non uniformément observable

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 mai 2019 10:45-11:45 Lieu : Oratrice ou orateur : Ulysse Serres Résumé :

Dans cet exposé, nous nous intéressons au problème de stabilisation par retour de sortie dynamique (et lisse) pour des systèmes de contrôle non uniformément observables. Dans un premier temps, nous analysons ce problème à  travers un exemple académique pour lequel le point d’équilibre auquel nous voulons stabiliser le système correspond à  une valeur de contrôle rendant le système inobservable. Dans un deuxième temps nous mettrons en évidence certaines difficultés liées au problème de l’observation des systèmes non uniformément observables.


Homogenization and Dimension Reduction in Textiles

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 mai 2019 11:00-12:00 Lieu : Oratrice ou orateur : Julia Orlik Résumé :

Le résumé se trouve ici