Séminaires

Exposés à venir

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
 

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Viviana Grasselli (Metz), Camille Labourie (Nancy), Dominik Stantejsky (Nancy) et Alessandro Duca (Nancy).

Séminaire: Convection-dominated transport problems in thin graph-like networks

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel’nyk Résumé :

The lecture addresses time‑dependent convection–diffusion problems with high Péclet number in thin 3D graph‑like networks of curvilinear cylinders connected by nodes of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Robin boundary conditions with different intensity factors are imposed on the network boundary. As $\varepsilon \rightarrow 0,$ the network collapses to a graph and the diffusion terms vanish.

Such problems pose singular‑perturbation challenges that standard methods often cannot resolve. I present a systematic asymptotic framework for $\varepsilon \rightarrow 0,$ combining regular expansions on edges with node‑layer and boundary‑layer asymptotics to capture the multiscale flow structure. The analysis justifies reduced graph models, quantifies higher‑order corrections, and uncovers new phenomena in singular regimes.


Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 décembre 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :

Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives


Régularité d'un problème à frontière libre d'ordre 4

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 décembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :

Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.

C’est un travail en collaboration avec Jimmy Lamboley.


Séminaire: titre à venir

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :

Résumé à venir


Romeo LEYLEKIAN

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :

Laure GIOVANGIGLI

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :

Lucas COEURET

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :

Marc PEGON

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :

Nicolas VANSPRANGHE

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :

Benoit MERLET

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :

Camille LAURENT

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :

Archives

Systèmes quantiques dissipatifs : une introduction

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 4 octobre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Jérémy Faupin Résumé :

Résumé


Sur l'existence de solutions fortes d'un problème fluide-structure avec conditions de Navier.

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 octobre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Imene Djebour Résumé :

On considère un système d’interaction fluide-structure entre un fluide incompressible dans un domaine tridimensionnel et une plaque élastique localisée sur la partie supérieure du bord. Le fluide est gouverné par l’équation de Navier-Stokes et le mouvement de la structure est régit par l’équation des plaques avec damping. On munit notre système des conditions de Navier sur le bord. Notre principal objectif est d’étudier l’existence et l’unicité de solutions fortes associées à  ce système.


Existence versus non existence de solutions globales d'EDP d'ordre m

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 octobre 2019 09:15-10:15 Lieu : Oratrice ou orateur : SAàD BENACHOUR Résumé :

Résumé


Sobolev solutions of parabolic equation in a complete riemannian manifold

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 27 septembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Éric Amar Résumé :

We study Sobolev estimates for the solutions of parabolic equations acting on a vector bundle, in a complete, compact or non compact, riemannian manifold $M$. The idea is to introduce geometric weights on $M$. We get global Sobolev estimates with these weights. As applications, we find and improve « classical results », i.e. results without weights, by use of a Theorem by Hebey and Herzlich. As an example we get Sobolev estimates for the solutions of the heat equation on $p$-forms when the manifold has « weak bounded geometry  » of order $1$.


Hardy-Sobolev inequalities with singularities on non smooth boundary

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 28 juin 2019 11:00-12:00 Lieu : Oratrice ou orateur : Hussein Cheikh Ali Résumé :

Le résumé se trouve ici


Uncertainty Quantification for Inverse Problems Governed by PDEs

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 juin 2019 10:45-11:45 Lieu : Oratrice ou orateur : Mark Asch Résumé :

Résumé


La méthode LS-STAG avec schéma diamant pour l'approximation de la diffusion : une méthode cut-cell précise et efficace pour les écoulements 3D incompressibles

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 juin 2019 11:00-12:00 Lieu : Oratrice ou orateur : Brice Portelenelle Résumé :

La méthode LS-STAG est une méthode cartésienne pour le calcul d’écoulements incompressibles en géométries complexes, qui propose une discrétisation précise des équations de Navier-Stokes dans les cut-cells, cellules polyédriques de forme complexe créées par l’intersection du maillage cartésien avec la frontière du solide immergé. Originalement développée pour les géométries 2D, o๠seuls trois types de cut-cells génériques sont présents, son extension aux géométries 3D se heurte au défi posé par le grand nombre de types de cut-cells (108) à  considérer. Cet exposé présentera une discrétisation plus précise du gradient dans les termes diffusifs de Navier-Stokes, à  l’aide du schéma diamant, ainsi que l’extension aux géométries 3D complètes par l’élaboration d’une formule générique de discrétisation spatiale dans les cut-cells, indépendante de la forme de celles-ci.


Régularité partielle anisotropique des équations de Navier-Stokes

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 juin 2019 10:45-11:45 Lieu : Oratrice ou orateur : Mohammed Ziane Résumé :

Résumé


Stabilisation en temps fini pour des équations paraboliques

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 juin 2019 11:00-12:00 Lieu : Oratrice ou orateur : Rémi Buffe Résumé :

Dans cet exposé, je présenterai le lien entre l’existence d’une inégalité de type Lebeau-Robbiano pour un opérateur autoadjoint à  résolvante compacte, et le contrôle impulsionnel de l’équation parabolique associée. Je présenterai ensuite une construction d’une loi de feedback donnant un résultat de stabilisation en temps fini. C’est un travail en collaboration avec Kim Dang Phung.


Estimation d'erreur a posteriori et critères d'arrêt pour une méthode de décomposition de domaines globale en temps

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 mai 2019 10:45-11:45 Lieu : Oratrice ou orateur : Michel Kern Résumé :

La modélisation du piégeage capillaire (un fluide reste confiné dans une région du sous-sol) conduit à  une équation de diffusion non-linéaire dégénérée dans laquelle le coefficient de diffusion est discontinu à  travers une interface. Le problème peut-être résolu par une méthode de décomposition de domaines globale en temps, basée sur l’algorithme de relaxation d’onde de Schwarz, avec des conditions de transmission non-linéaires de type Robin à  travers l’interface. Dans chaque sous-domaine, un problème en est résolu sur tout l’intervalle de temps à  chaque itération, avant l’utilisation des conditions de transmission. L’arrêt des itérations utilise un critère construit à  partir d’estimateurs d’erreurs a posteriori, distinguant les erreurs de discrétisation en espace, en temps et l’erreur due à  la décomposition de domaines. Ces estimateurs reposent sur la reconstruction de champs de pression et de flux conformes. Les itérations de décomposition de domaines peuvent ainsi être arrêtées dès que l’erreur de DD est inférieure aux erreurs de discrétisation.