Séminaires

Exposés à venir

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
 

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Anne-Sophie de Suzzoni (Polytechnique)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne-Siphie de Suzzoni (Polytechnique) Résumé :

Jérôme Le Rousseau (Université Paris Nord)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :

Anisa Chorwadwala (IISER, India)

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anisa Chorwadwala (IISER, India) Résumé :

Karol Bołbotowski (Université de Varsovie)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Karol Bołbotowski (Université de Varsovie) Résumé :

Viet Dang Nguyen (Université de Strasbourg)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Viet Dang Nguyen (Université de Strasbourg) Résumé :

Xavier Lamy (Université de Toulouse)

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Lamy (Université de Toulouse) Résumé :

Archives

Observateur adaptatif pour une population structurée en âge

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 1 mars 2019 11:00-12:00 Lieu : Oratrice ou orateur : Jean-Claude Vivalda Résumé :

Nous étudions la dynamique d’une population structurée en âge dont l’évolution est modélisée par les équations de McKendrick–Von Foerster avec un terme de diffusion spatiale. Pour ce modèle, nous examinons le problème de la conception d’un observateur, supposant que l’on observe l’état de la population sur une sous-domaine. Cet observateur fournit à  la fois une estimation de l’évolution de la population et celle du coefficient de diffusion spatiale supposé inconnu. Il est obtenu en généralisant la construction d’un observateur de Luenberger en dimension finie à  notre système en dimension infinie.


Modélisation macroscopique de trafic piéton dans le contexte d'une évacuation de salle

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 février 2019 10:45-11:45 Lieu : Oratrice ou orateur : Ulrich Razafison Résumé :

Dans cet exposé, nous nous placerons dans le cadre du trafic piéton et nous présenterons un modèle permettant de décrire la chute de capacité (c’est-à -dire le flux maximal de piétons par unité de temps) d’une sortie de salle lors d’une évacuation. Le modèle repose sur une loi de conservation et la capacité de la sortie est décrite par une contrainte sur le flux. Nous supposons que cette contrainte dépend de la solution du modèle elle-même, de façon non locale en espace. La chute de capacité se produit pour les hautes densités de piétons exprimant ainsi la congestion de la sortie. Par des simulations numériques, nous montrerons que le modèle est capable de reproduire deux effets paradoxales liés à  la chute de capacité et qui ont déjà  été observés et reproduits expérimentalement : l’effet  »Faster-Is-Slower » qui stipule qu’une augmentation de la vitesse des piétons peut entraîner une augmentation du temps d’évacuation, et une variante du « paradoxe de Braess » qui indique que placer un obstacle avant la sortie peut faire diminuer la pression des piétons sur la sortie et entraîner une réduction du temps d’évacuation. Nous présenterons également des améliorations du modèle initial. Ces travaux sont en collaboration avec Boris Andreianov, Carlotta Donadello et Massimiliano Rosini.


Optimisation asymptotique des valeurs propres des tores

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 février 2019 10:45-11:45 Lieu : Oratrice ou orateur : Jean Lagacé Résumé :

Bien que les domaines optimisant la première valeur propre du Laplacien soient bien connus, très peu de résultats existent concernant l’optimisation de valeurs propres loin dans le spectre. Dans les dernières années, il a été montré, à  travers une série de publication culminant par celle de Gittins et Larson, que les cuboïdes optimisant la k-ième valeur propre de Dirichlet ou de Neumann convergent vers le cube et ce en toute dimension. Nous verrons comment ce comportement diffère pour les tores plats. Nous montrons qu’en dimension inférieure à  10 il n’existe pas de tore plat limite à  ce problème d’optimisation asymptotique. Ce sera fait en obtenant un contrôle géométrique explicite sur le reste dans la loi de Weyl pour la fonction de compte des valeurs propres.


Contrôle optimal sous contrainte d'un modèle hydrogéologique : un problème de pollution des eaux en sous-sol

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 8 février 2019 11:00-12:00 Lieu : Oratrice ou orateur : Éloïse Comte Résumé :

Le résumé se trouve ici


Analyse mathématique du modèle de Navier-Stokes quantique

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 février 2019 10:45-11:45 Lieu : Oratrice ou orateur : Ingrid Violet Résumé :

Le modèle de Navier-Stokes quantique correspond au modèle classique de Navier-Stokes auquel est ajouté un terme de correction quantique appelé potentiel de Bohm. On s’intéressera dans cet exposé à  l’étude de l’existence de solutions ainsi qu’aux limites asymptotiques du modèle (limite semi-classique et limite de faible viscosité).


Problème inverse pour des équations de diffusion

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 29 janvier 2019 10:45-11:45 Lieu : Oratrice ou orateur : Kian Yavar Résumé :

Nous considérons le problème inverse consistant à  déterminer de façon unique un terme apparaissant dans une équation de diffusion, linéaire ou non-linéaire, à  partir de mesures des solutions sur le bord du domaine. Dans le cas linéaire, notre équation est une équation de convection-diffusion décrivant le transfert de particules, d’énergie ainsi que d’autres quantités physiques. Notre problème inverse consiste à  déterminer le champs de vitesse, avec lequel la quantité décrite se déplace, ainsi que des informations à  propos de la densité du milieu. Nous nous plaçons dans un cadre général o๠les quantités que nous cherchons à  déterminer sont associées à  des coefficients dépendant des variables spatiales et temporelles avec des conditions de régularité affaiblies. Dans le cas non-linéaire, nous traiterons le problème consistant à  déterminer un terme quasi-linéaire apparaissant dans l’équation. Ce travail est issu d’une collaboration avec Pedro Caro.


Maximisation des valeurs propres du Laplacien-Neumann

Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 29 janvier 2019 09:15-10:15 Lieu : Oratrice ou orateur : Antoine Henrot Résumé :

Résumé


Sédimentation de particules dans un fluide visqueux

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 janvier 2019 10:45-11:45 Lieu : Oratrice ou orateur : Amina Mecherbet Résumé :

On s’intéresse au problème de sédimentation de N particules dans un fluide visqueux. On suppose que les particules sont sphériques avec un rayon proportionnel à  1/N. On néglige l’inertie et on prend en compte la vitesse angulaire des particules. Un premier résultat dà» à  P.E. Jabin et F. Otto montre qu’il n y a pas d’interaction entre les particules si elles sont « assez diluées ». i.e la distance minimale entre les particules est très grande devant 1/N^{1/3}. Un deuxième résultat dà» à  R.M Höfer montre que, dans le cas o๠la distance minimale entre les particules est de l’ordre de 1/N^{1/3}, il y a interaction entre les particules et le modèle converge lorsque N tend vers l’infini vers l’équation de Vlasov-Stokes. Dans cet exposé, on s’intéresse à  l’extension de ces résultats pour des configurations de particules ayant une distance minimale inférieure au seuil critique 1/N^{1/3}. En utilisant la méthode de reflections, on calcule explicitement la vitesse de chute de chaque particule. Ce qui nous permet, dans un premier temps, d’assurer la propagation en temps fini de la distance minimale. Dans un second temps, on montre que la densité converge au sens de la distance de Wasserstein vers la solution de l’équation de Vlasov-Stokes. L’étude de convergence découle de la théorie de champs moyens développée par M. hauray et P.E Jabin dans leurs papiers.


The spectrum of double layer potentials for some 3D domains with corners and edges

Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 11 janvier 2019 11:00-12:00 Lieu : Oratrice ou orateur : Karl-Mikael Perfekt Résumé :

I will talk about the spectrum of double layer potential operators for 3D surfaces with rough features. The existence of spectrum reflects the fact that transmission problems across the surface may be ill-posed for (complex) sign-changing coefficients. The spectrum is very sensitive to the regularity sought of solutions. For L2 boundary data, for domains with corners and edges, the spectrum is complex and carries an associated index theory. Through an operator-theoretic symmetrisation framework, it is also possible to recover the initial self-adjoint features of the transmission problem – corresponding to H1/2 boundary data – in which case the spectral picture is more familiar.


Temps de crise et viabilité

Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 décembre 2018 10:45-11:45 Lieu : Oratrice ou orateur : Térence Bayen Résumé :

Dans cet exposé, on s’intéresse à  la minimisation du temps de crise, fonctionnelle discontinue en horizon infini. Cette fonctionnelle mesure le temps passé par une solution d’un système contrôlé à  l’extérieur d’un ensemble K qui représente typiquement des contraintes d’état. Lorsque la condition initiale n’est pas dans le noyau de viabilité de K, ou que ce noyau est vide, la minimisation de cette fonctionnelle prend tout son sens. A travers cet exposé, on verra comment donner les conditions nécessaires d’optimalité permettant de calculer une trajectoire optimale, et on étudiera une régularisation du temps de crise. On examinera la convergence des extrémales du problème régularisé vers une extrémale du problème original (par Gamma-convergence). Enfin, grâce une reformulation du temps de crise, nous développerons quelques exemples pour comparer celui-ci avec la stratégie « temps minimal » pour rejoindre le noyau de viabilité.