Séminaires

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Exposés à venir

Controllability of some wave equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :

In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.


Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Archives

Some Examples of Particle Simulations

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 1 juin 2018 11:00-12:00 Lieu : Oratrice ou orateur : Robert Krasny Résumé :

Particles are used in several different ways in computational physics. For example one can study systems of point masses, point charges, or point vortices. Another approach considers the particle system as a discretization of a continuous PDE problem; in this case one is dealing with a particle method, as an alternative to the classical discretization methods such as finite-difference, finite-element, and spectral methods. Here we consider particle methods in two areas, (1) electrostatics of solvated proteins, where the particles are nodes in a triangulation of the molecular surface, and (2) incompressible fluid dynamics, where the particles represent the flow map and carry vorticity. We discuss the challenges facing particle methods and some techniques that improve their accuracy and efficiency, including adaptive refinement, remeshing, and treecode-acceleration.


Autour de l'équation de Schrödinger non linéaire avec dispersion de forme bruit blanc

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 29 mai 2018 09:15-10:15 Lieu : Oratrice ou orateur : Renaud Marty Résumé :

Résumé


Bifurcations et stabilité des ondes périodiques dans l'équation de Lugiato-Lefever

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 25 mai 2018 11:00-12:00 Lieu : Oratrice ou orateur : Mariana Haragus Résumé :

Nous étudions l’existence et la stabilité des ondes périodiques pour un modèle non linéaire, l’équation de Lugiato-Lefever, issu de l’optique. En utilisant des méthodes de la théorie des bifurcations, nous étudions les bifurcations de Turing et montrons l’existence de solutions périodiques. Cette approche permet également de conclure sur la stabilité de ces solutions vis-à -vis de perturbations périodiques dont la période est un multiple entier de la période de l’onde. En utilisant ensuite de méthodes de la théorie des opérateurs, nous montrons la stabilité de ces solutions vis-à -vis de perturbations générales, bornées.


Instabilités paramétriques d'interfaces en rotation sinusoidale dans une cellule annulaire de Hele-Shaw

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 22 mai 2018 10:45-11:45 Lieu : Oratrice ou orateur : Mohammed Souhar Résumé :

L’étude de stabilité d’une interface séparant deux fluides non miscibles confinés dans une cellule de Hele-Shaw annulaire en rotation constante a fait l’objet de plusieurs travaux théoriques et expérimentaux. Les forces centrifuges, en présence d’une différence de densités entre les deux fluides donnent lieu a une instabilité de Rayleigh-Taylor avec des effets de viscosité. Le cas d’une rotation constante a été largement étudié et sans etre exhaustif on peut citer Schwartz (Phys.Fluids 1989), Miranda et al. (Phys. Rev. E 2000,2004,2017)……Le cas de la vitesse de rotation instationnaire a été très peu étudié. C’est pourquoi, nous avons entamé cette étude avec une vitesse de rotation sinusoidale dans lequel un écoulement pulsé généré par des forces d’entrainement résultant de la dépendance du temps de la rotation. On considère deux fluides newtoniens incompressibles non miscibles de densités et viscosités différentes confinés dans une cellule de Hele-Shaw annulaire soumise a un mouvement de rotation périodique sinusoidale et on s’intéresse a la stabilité de l’interface. Dans le cadre de l’approximation de Hélé-Shaw une solution analytique de base instationnaire a été trouvée. La solution de base perturbée a l’aide des méthodes classiques de la stabilité linéaire conduit a une équation de dispersion de type Mathieu. Equation qui permet de déterminer les zones d’instabilités dans le plan amplitude-fréquence de forcage pour un nombre d’onde azimutal donné. Les différents effets de la viscosité, de tension superficielle, de forces de Coriolis, et des forces d’inertie seront discutés. La résolution de l’équation de dispersion dans le cas général avec la méthode de Floquet est en cours et seul des résultats pour des cas particuliers (perturbations non visqueuses et effet de force de Coriolis négligeable) seront présentés. Ce travail est mené en collaboration avec Dr S. Aniss FS Ain Choc Casablanca.


Boundary value problems in domains with small holes close to the boundary

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 mai 2018 10:45-11:45 Lieu : Oratrice ou orateur : Paolo Musolino Résumé :

In this talk, we present some recent results on the analysis of singular perturbation problems in perforated domains. First, we will consider the asymptotic behavior of the solutions of a mixed problem for the Laplace equation in a domain with moderately close holes, i.e., with distance tending to zero « not faster » than the size. We describe what happens to the solutions in terms of real analytic maps and we compute asymptotic expansions, by an approach based on Potential Theory and Functional Analysis. Then we will show how our method can be exploited to analyze the influence of perforations approaching to a point of the boundary. First we will assume that the boundary is « flat » around the « singular » point. Then we will consider perforations concentrating around the vertex of a planar sector. The talk is based on joint works with V. Bonnaillie-No »el, M. Costabel, M. Dalla Riva, M. Dambrine, and M. Dauge. »


Efficient high order and domain decomposition methods for the time-harmonic Maxwell's equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 avril 2018 10:45-11:45 Lieu : Oratrice ou orateur : Marcella Bonazzoli Résumé :

The time-harmonic formulation of Maxwell’s equations presents several difficulties when the frequency is large. Here we propose a precise and efficient solution strategy that couples high order finite element discretizations with domain decomposition preconditioners. Finite elements suited for the approximation of the electric field are the curl-conforming (or edge) finite elements. Here, we revisit the classical degrees of freedom defined by Nédélec, in order to obtain a new more friendly expression in terms of the chosen high order basis functions. Moreover, we propose a general technique to restore duality between degrees of freedom and basis functions. We explicitly describe an implementation strategy, which we embedded in the open source domain specific language FreeFem++. In the second part, we focus on the preconditioning of the system resulting from the finite element discretization. In particular we investigate how two-level domain decomposition preconditioners recently analyzed for the Helmholtz equation work in the Maxwell case, both from the theoretical and numerical points of view. We apply these methods to the large scale problem arising from the modeling of a microwave imaging system, for the detection and monitoring of brain strokes. In this application accuracy and computing speed are indeed of paramount importance.


A critical point theorem in bounded sets and localization of Nash equilibrium solutions

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 13 avril 2018 11:00-12:00 Lieu : Oratrice ou orateur : Radu Precup Résumé :

The localization of a critical point of minimum type of a smooth functional is obtained in a bounded convex conical set defined by a norm and a concave upper semicontinuous functional. The technique is then used for the localization and multiplicity of Nash equilibrium solutions of nonvariational systems. Applications are given to periodic problems.


Contrôle optimal pour un problème de pollution en sous-sol

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 avril 2018 10:45-11:45 Lieu : Oratrice ou orateur : Éloïse Comte Résumé :

Ce travail s’inscrit dans un contexte de contrôle de la pollution d’origine agricole des ressources en eau, en alliant modélisation économique et hydrogéologique. Pour cela, nous définissons d’une part un objectif économique spatio-temporel prenant en compte le compromis entre l’utilisation d’engrais et les coà»ts de dépollution. D’autre part, nous décrivons le transport du polluant dans le sous-sol (3D en espace) par un système non linéaire d’équations aux dérivées partielles couplées de type parabolique (réaction-convection-dispersion) et elliptique dans un domaine borné. Des résultats génériques sont donnés (cf. [Augeraud-Véron, Choquet, Comte : JOTA 2017]) et le cas particulier des faibles concentrations est traité, cas pour lequel un résultat d’unicité est démontré par analyse asymptotique (cf. [Augeraud-Véron, Choquet, Comte : ESAIM COCV, à  paraitre]) ́. Quelques résultats numériques (2D en espace) illustreront ces résultats analytiques. Ces derniers pourront être élargis au cadre de la théorie des jeux, o๠plusieurs joueurs interviennent, avec notamment un résultat d’existence d’un équilibre de Nash.


Théorie de la diffusion pour des modèles mathématiques de l'interaction faible

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 avril 2018 11:00-12:00 Lieu : Oratrice ou orateur : Benjamin Alvarez Résumé :

La désintégration du boson W en un couple lepton-neutrino peut être modélisée par un opérateur autoadjoint agissant sur un espace de Fock, qui est un espace de Hilbert particulier. Les valeurs que peut prendre l’énergie du système physique correspondent au spectre de cet opérateur, qui peut être scindé en trois parties : le spectre ponctuel, absolument continu et singulièrement continu. Le sous-espace de Hilbert associé à  la partie absolument continue du spectre contient les états diffusés, c’est-à -dire étant localisés loin de l’expérience au bout d’un temps très long. Intuitivement, on s’attendrait à  ce que de tels états soient asymptotiquement libres (c’est-à -dire se comportant, en temps infini, comme s’il n’y avait aucune interaction). Cette propriété se traduit en termes mathématiques par la notion de complétude asymptotique des opérateurs d’onde. Un des objets essentiels de la mécanique quantique est la matrice de diffusion (ou de scattering) qui associe à  chaque état entrant diffusé, un état sortant à  son tour diffusé. Un des objectifs de la théorie de la diffusion est de prouver l’existence de la matrice de scattering et la complétude asymptotique des opérateurs d’ondes associés. Le but de cette présentation est de donner un sens rigoureux à  toutes ces notions, d’introduire les outils fondamentaux utilisés dans cette branche de la physique mathématique et de présenter quelques résultats récents sur un modèle simplifié de la désintégration du boson W.


Justification d'une équation de Zakharov linéaire en turbulence d'onde pour un système Hamiltonien stochastique.

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 mars 2018 10:45-11:45 Lieu : Oratrice ou orateur : Erwan Faou Résumé :

On considère un système semi-linéaire d’interaction à  trois ondes posée sur un grand tore, avec nonlinéarité petite et forçage stochastique en angle des coefficients de Fourier. Ce système possède des mesures invariantes naturelles. Dans un certain régime asymptotique (taille du tore tendant vers l’infini, taille de la nonlinéarité tendant vers zéro et taille du forçage tendant vers zéro), on montre que dans un régime linéarisé autour des mesures invariantes, les fluctuations des modules des coefficients de Fourier convergent vers les solutions d’équations de Zakharov linéarisées apparaissant en théorie de turbulence d’ondes.