Séminaires

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Exposés à venir

Controllability of some wave equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :

In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.


Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Archives

Système fluide-structure avec conditions de bord sur la pression

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 janvier 2018 10:45-11:45 Lieu : Oratrice ou orateur : Jean-Jérôme Casanova Résumé :

Dans cet exposé je souhaite présenter un résultat d’existence de solutions fortes, locales en temps, pour un système fluide-structure avec conditions de bord mixtes. Le fluide est décrit par les équations de Navier-Stokes incompressibles en dimension 2 dans un domaine de type rectangulaire. La partie supérieure du domaine est une membrane dont le déplacement satisfait une équation d’Euler-Bernoulli amortie. Le résultat est donné sans aucunes hypothèses de petitesse sur les données initiales. Je conclurai en évoquant l’existence de solutions périodiques en temps pour ce système.


Numerical integration based on rational interpolation

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 22 décembre 2017 11:00-12:00 Lieu : Oratrice ou orateur : Karl Deckers Résumé :

In this talk we will discuss rational quadrature rules in a general framework. Rather than focusing on theoretical aspects, we will discuss their advantages and disadvantages for practical use compared to classical (polynomial) quadrature rules, and deal with questions like « how to chose the poles” and « when to chose rational quadrature rules over polynomial quadrature rules”. We conclude with presenting some existing algorithms to compute the nodes and weights in certain types of rational quadrature rules.


Entire solutions of the Allen-Cahn-Nagumo equation

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 décembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Hirokazu Ninomiya Résumé :

When several stable states coexist, propagation phenomena are often observed in many fields including dissipative situations. To characterize the universal profiles of these phenomena, traveling wave solutions and entire solutions play important roles. Here traveling wave solution is meant by a solution of a partial differential equation that propagates with a constant speed, while it maintains its shape in space, and an entire solution is a solution defined for all space and time variables. In this talk we focus on the Allen-Cahn-Nagumo equation, which is a single reaction diffusion equation with bistable nonlinearity and explain how to construct entire solutions and the relation between traveling wave solutions and entire solutions.


Solutions « exotiques » d'une équation elliptique non-linéaire

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 15 décembre 2017 11:00-12:00 Lieu : Oratrice ou orateur : Simon Labrunie Résumé :

On s’intéresse à  divers types de solutions de l’équation -Δφ = exp(-φ) : solutions infinies sur le bord du domaine, ou définies dans un domaine non-borné… en présence de singularités. Ces solutions interviennent dans l’étude de l’équilibre électrostatique d’un plasma au voisinage d’une pointe conductrice.


Approximation de fonctions avec peu de saut et existence de minimiseurs forts de Griffith en dimension n

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 décembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Flaviana Iurlano Résumé :

On preuve que les fonctions spéciales à  déformation bornée avec peu de saut sont proches dans le sens de l’énergie à  des fonctions qui sont régulières dans un domaine plus petit. Cela permet de généraliser l’inégalité de monotonie de De Giorgi, Carriero et Leaci au contexte linéarisé en dimension n et d’établir la fermeture de l’ensemble de saut pour les minimiseurs de l’énergie de Griffith.


Opérateurs de Dirac et interactions delta.

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 8 décembre 2017 11:00-12:00 Lieu : Oratrice ou orateur : Thomas Ourmières-Bonafos Résumé :

Dans cet exposé, on discutera différents aspects de l’opérateur de Dirac en dimension trois, couplé à  un potentiel singulier supporté sur une surface. Après avoir motivé l’étude de tels objets, on s’intéressera brièvement au problème d’auto-adjonction pour des potentiels singuliers de type électrostatique ou de type scalaire de Lorentz. Pour cette dernière classe de potentiels, on étudiera la structure du spectre d’un tel opérateur et en particulier, on montrera que lorsque la masse de la particule tend vers l’infini, dans le cas d’un potentiel attractif, les valeurs propres se comportent au premier ordre comme les valeurs propres d’un opérateur effectif sur la surface. On verra que cet opérateur effectif est en fait un opérateur de Schrödinger avec champ de Yang-Mills couplé à  un potentiel électrique, le champ et le potentiel étant tous deux de nature géométrique. Il s’agit de travaux en collaboration avec Markus Holzmann, Konstantin Pankrashkin et Luis Vega. [1.] A strategy for self-adjointness of Dirac operators: applications to the MIT bag model and delta-shell interactions, with Luis Vega, 30p., to appear in Publicacions Matemà tiques, arXiv:1612.07058, 2016. [2.] Dirac operators with Lorentz scalar shell interactions, with Markus Holzmann and Konstantin Pankrashkin, 41 p., submitted, arXiv:1711.00746, 2017.


Hyperbolic solutions to Bernoulli's free boundary problem

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 décembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Michiaki Onodera Résumé :

Bernoulli’s free boundary problem is an overdetermined problem in which one seeks an annular domain such that the capacitary potential satisfies an extra boundary condition. There exist two different types of solutions: elliptic and hyperbolic solutions. Elliptic solutions are « stable » solutions and tractable by variational method and maximum principle, while hyperbolic solutions are « unstable » solutions of which the qualitative behavior is less known. I will present a recent joint work with Antoine Henrot in which we show the qualitative behavior of hyperbolic solutions by a new flow approach.


Modélisation de phénomènes de diffusion : interfaces

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 décembre 2017 09:15-10:15 Lieu : Oratrice ou orateur : Antoine Lejay Résumé :

Résumé


Sur la géométrie des oeufs de branchiopodes

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 novembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Alexandre Delyon Résumé :

On veut expliquer la forme des oeufs d’eulimnadia, petit animal vivant dans des mares éphémères, en utilisant les outils de l’optimisation de forme. En effet, la théorie de l’évolution laisse penser que la forme des objets que l’on retrouve dans la nature résulte d’un processus d’optimisation, c’est à  dire que leur forme est telle que l’objet en question est le plus à  même de résister aux contraintes qui s’exercent sur lui. On propose un critère naturel optimisé par la forme de l’oeuf, que l’on modélise mathématiquement par un problème de minimisation de fonctionnelle de forme s’écrivant comme combinaison convexe du rayon intérieur, du diamètre et de la densité, notion que l’on définira. On présente le travail réalisé jusqu’à  présent.


Modélisation de phénomènes de diffusion : probabilités et EDP

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 novembre 2017 09:15-10:15 Lieu : Oratrice ou orateur : Antoine Lejay Résumé :

Résumé