Séminaires

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Exposés à venir

Controllability of some wave equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :

In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.


Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Archives

Singularités de coins pour les problèmes de transmission avec changement de signe

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 7 avril 2017 11:00-12:00 Lieu : Oratrice ou orateur : Anne-Sophie Bonnet-Ben Dhia Résumé :

On considère des matériaux électromagnétiques qui sont tels que, dans une certaine gamme de fréquences, la permittivité diélectrique a une partie imaginaire faible et une partie réelle négative. Ceci se produit par exemple dans les métaux tels que l’argent, aux fréquences optiques. Pour de tels matériaux, les coins sont le lieu de phénomènes singuliers très surprenants. En particulier, une partie de l’énergie des ondes peut être capturée par le coin, donnant lieu à un phénomène dit de trou noir. Dans cette présentation, nous proposons une analyse mathématique de ce phénomène dans le cas bidimensionnel, reposant sur une description détaillée des singularités de coins pour l’équation de Helmholtz avec des coefficients changeant de signe. Nous montrons que ces équations peuvent être mal posées dans le cadre fonctionnel usuel, puis nous proposons et justifions un nouveau cadre, incluant des fonctions singulières hyper-oscillantes, dans lequel le caractère bien posé peut être rétabli. Sur le plan numérique, nous nous intéressons à l’approximation de la solution par éléments finis. Dans les configurations sans phénomène de trou noir, nous montrons qu’il suffit d’imposer certaines règles de maillage au voisinage des coins pour assurer la convergence de la méthode. En revanche, ceci n’est pas suffisant en présence d’ondes de trou noir hyper-oscillantes. La solution que nous avons trouvée est alors d’utiliser des PML (Perfectly Matched Layers) au voisinage des coins. Ces approches sont validées par différents résultats numériques.


Représentation paramétrique en optimisation de formes

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 mars 2017 10:45-11:45 Lieu : Oratrice ou orateur : Benjamin Bogosel Résumé :

Résumé


Prolongement unique et contrôle approché de l'équation des ondes

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 mars 2017 11:00-12:00 Lieu : Oratrice ou orateur : Matthieu Léautaud Résumé :

On s’intéresse à la question de prolongement unique suivante : l’observation de l’intensité d’une onde sur un petit sous-domaine pendant un intervalle de temps détermine t-elle l’énergie totale de l’onde ? Résolu dans un cadre analytique par le célèbre théorème de Holmgren-John (1949), ce problème resta ouvert dans le cadre général jusqu’aux travaux de Tataru-Robbiano-Zuily-Hörmander (1995-1998). Dans cet exposé, on donnera l’estimée de stabilité optimale associée à ces résultats. Ce faisant, on répondra aussi à la question suivante : quelle est l’intensité de l’onde que l’on perçoit dans l’ombre d’un obstacle ? On en déduira enfin le coût de la contrôlabilité approchée de l’équation des ondes, c’est à dire, la taille d’un contrôle qui, agissant localement sur l’onde, peut amener l’état dans un epsilon voisinage d’une cible fixée. Il s’agit un travail en collaboration avec Camille Laurent.


Métriques conformes dans R^n avec Q-courbure constante et volume quelconque

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 mars 2017 10:45-11:45 Lieu : Oratrice ou orateur : Dong Ye Résumé :

Résumé


Estimations a priori et symétrie pour des systèmes elliptiques dans $R^n$

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 3 mars 2017 11:00-12:00 Lieu : Oratrice ou orateur : Jérôme Vétois Résumé :

Dans cet exposé, nous étudierons une classe de systèmes d’équations de Schrödinger couplées dans $R^n$ tout entier. Je discuterai une notion de solutions d’énergie finie pour ces systèmes et je présenterai des résultats d’estimation a priori et de symétrie sur ces solutions.


ProblàƒÂ¨me de diffusion inverse àƒÂ  énergie fixée pour des variétés de StàƒÂ¤ckel asymptotiquement hyperboliques de dimension 3

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 février 2017 10:45-11:45 Lieu : Oratrice ou orateur : Damien Gobin Résumé :

Résumé


Regulation by integral controller for quasi-linear hyperbolic PDE

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 17 février 2017 11:00-12:00 Lieu : Oratrice ou orateur : Vincent Andrieu Résumé :

This talk deals with the control and regulation by integral controllers for the nonlinear systems governed by scalar quasi-linear hyperbolic partial differential equations. Both the control input and the measured output are located on the boundary. The closed-loop stabilization of the linearized model with the designed integral controller is proved first by using the method of spectral analysis and then by the Lyapunov direct method. Based on the elaborated Lyapunov function we prove local exponential stability of the nonlinear closed-loop system with the same controller. The output regulation to the set-point with zero static error by the integral controller is shown upon the nonlinear system.


Méthodes variationnelles pour la restauration/complétion d’images

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 février 2017 11:00-12:00 Lieu : Oratrice ou orateur : Zakaria Belhachmi Résumé :

Le problème de la restauration/complétion d’images (images inpainting) est un problème classique d’analyse et traitement d’images. Il consiste à Â  chercher à Â  restaurer une image dont une partie est endommagée ou perdue de manière « raisonnable » et « satisfaisante ». Il existe une multitude de méhodes pour répondre au problème, parmi lesquelles, les méthodes variationnelles des EDPs qui ont rencontré un franc succès essentiellement dans la restauration de la géométrie (par opposition aux textures). Une difficulté centrale dans ce domaine et de restaurer des arêtes, des coins (ensembles singuliers) et de respecter les courbures. Difficulté qui ne peut s’exprimer qu’à  l’aide de modèles (fortement) nonlinéaires. L’exposé traitera de ces méthodes basées sur les EDPs et montrera que des modèles simples (linéaires) construits de manière adaptative permettent de traiter cette difficulté et d’obtenir, au sens de la Gamma-convergence, des modèles sophistiqués « mesurant » ces ensembles singuliers.


Contrôle et stabilisation de l'équation d'Euler à surface libre

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 3 février 2017 11:00-12:00 Lieu : Oratrice ou orateur : Thomas Alazard Résumé :

L’équation d’Euler à surface libre régit la dynamique de l’interface séparant l’air d’un fluide parfait incompressible. Cet exposé concerne l’étude de la contrôlabilité et de la stabilisation de cette équation. Le but est de comprendre la génération ainsi que l’amortissement des vagues dans un bassin à houle. Ces deux probl èmes seront abordés par des méthodes différentes : analyse microlocale pour la contrôlabilité, et étude de quantités globales pour la stabilisation (méthode des multiplicateurs, identité de Pohozaev, formulations hamiltonienne et lagrangienne des équations, lois de conservation, etc.).


Inversion de données en traitement du signal et des images : régularisation parcimonieuse et algorithmes de minimisation l0

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 27 janvier 2017 11:00-12:00 Lieu : Oratrice ou orateur : Charles Soussen Résumé :

Dans la première partie de l’exposé, je présenterai différents problèmes inverses auxquels je me suis intéressé ces dernières années et les contextes applicatifs associés : reconstruction d’images en tomographie, analyse d’images biologiques et d’images hyperspectrales en microscopie, problèmes d’inversion de données en spectroscopie optique avec applications biomédicales. Lorsque les données disponibles sont en nombre limité et partiellement informatives sur la quantité à estimer (problèmes inverses mal posés), la prise en compte d’informations a priori sur les inconnues est indispensable, et s’effectue par le biais des techniques de régularisation. Dans la seconde partie de l’exposé, je présenterai plus particulièrement la régularisation parcimonieuse de problèmes inverses, basée sur la minimisation de la « norme » l0. Les algorithmes heuristiques proposés sont conçus pour minimiser des critères mixtes L2-L0 du type $$min_x J(x;lambda) = || y – Ax ||_2^2 + lambda || x ||_0.$$ Ce problème d’optimisation est connu pour être fortement non-convexe et NP-difficile. Les heuristiques proposées (appelées algorithmes « gloutons ») sont définies en tant qu’extensions d’Orthogonal Least Squares (OLS). Leur développement est motivé par le très bon comportement empirique d’OLS et de ses versions dérivées lorsque la matrice A est mal conditionnée. Je présenterai deux types d’algorithmes pour minimiser $J(x;lambda)$ à $lambda$ fixé et pour un continuum de valeurs de $lambda$. Finalement, je présenterai quelques résultats théoriques visant à garantir que les algorithmes gloutons permettent de reconstruire exactement le support d’une représentation parcimonieuse $y = Ax^*$, c’est-à-dire le support du vecteur $x^*$.