Séminaires

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Exposés à venir

Controllability of some wave equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :

In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.


Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Archives

Densité en GSBD et approximation d'énergie de rupture fragile

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 février 2018 10:45-11:45 Lieu : Oratrice ou orateur : Vito Crismale Résumé :

The seminar concerns the approximation à  la Ambrosio-Tortorelli of the Griffith energy functional for brittle fracture. While the Griffith energy depends on the n-1 dimensional discontinuity set of any function, the approximating energies are elliptic functionals (depending on a further emph{phase field} variable) so more convenient to minimise by Numerical Analysis techniques. For this reason this phase field approximation is employed in a large number of Mechanical works. The result applies to the Dirichlet minimisation problem and follows from a sharp density result in the energy space for the Griffith functional, that can be applied in other situations, e.g. to prove different approximations of Griffith energy.


Inégalités log-convexes pour les solutions de la chaleur

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 février 2018 09:15-10:15 Lieu : Oratrice ou orateur : Rémi Buffe Résumé :

Nous nous intéresserons à  l’obtention d’inégalités log-convexes à  poids portant sur les solutions de l’équation de la chaleur. La présence du poids permet de localiser l’information sur un sous-domaine, et permet ainsi de quantifier le prolongement unique ponctuel en temps. Nous essayerons de faire le lien avec les méthodes classiques d’inégalités de Carleman.


Détection par la lumière de tumeurs cancéreuses

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 2 février 2018 11:00-12:00 Lieu : Oratrice ou orateur : Fatmir Asllanaj Résumé :

Nos travaux portent sur l’imagerie optique des tissus biologiques en utilisant la lumière visible ou proche IR. C’est une technique non-invasive qui consiste à  reconstruire les propriétés optiques des tissus biologiques dans le but de détecter d’éventuelles tumeurs cancéreuses. Nous utilisons l’Equation du Transfert Radiatif (ETR) comme modèle (direct) de propagation de la lumière. Une analyse de sensibilité des paramètres du modèle a montré que le facteur d’anisotropie g de la fonction de phase de Henyey-Greenstein est le paramètre le plus sensible suivi du coefficient de diffusion puis du coefficient d’absorption. Notre algorithme de reconstruction est basé sur une méthode de Quasi-Newton. Le gradient de la fonction objectif est calculé efficacement par la méthode adjointe appliquée à  l’ETR avec une approche Multi-fréquences. Lors de mon exposé, je présenterai les modèles (sans et avec fluorescence) sur lesquels nous travaillons, les méthodes numériques que nous avons développé ainsi que les résultats que nous avons obtenu sur la reconstruction 2D et 3D de nos milieux biologiques. Le facteur g, utilisé comme nouvel agent de contraste optique endogène, permet de marquer davantage les tumeurs cancéreuses.


Conditions suffisantes pour le contrôle frontière d'une équation des ondes avec une condition de transmission

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 janvier 2018 10:45-11:45 Lieu : Oratrice ou orateur : Ludovick Gagnon Résumé :

L’équation des ondes avec une condition de transmission modélise la propagation d’ondes dans des milieux différents avec des vitesses de propagation différentes. à€ l’interface de ces milieux, la condition de transmission est équivalente, pour les rayons, à  la loi de Snell-Descartes. Un rayon incident à  l’interface peut donc être réfléchi dans le milieu d’o๠il provient et transmis dans l’autre milieu. La difficulté du problème d’observabilité de cette équation repose sur le fait que la condition de contrôle géométrique n’est plus suffisante. En effet, des interférences entre des rayons transmis et réfléchis peuvent survenir à  l’interface de sorte qu’un rayon observé dans la région d’observation ne donne pas suffisamment d’informations sur le rayon initial. Dans cet exposé nous présenterons des conditions géométriques suffisantes pour l’observabilité frontière de l’équation des ondes avec une condition de transmission. Nous introduirons une construction géométrique permettant d’analyser systématiquement la propagation des rayons provenant de l’interface.


La dimension diamétrale : un invariant topologique revisité

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 26 janvier 2018 11:00-12:00 Lieu : Oratrice ou orateur : Françoise Bastin Résumé :

Le résumé se trouve ici.


Interaction vague-structure pour des modèles d'ondes longues en présence d'un objet en translation au fond

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 janvier 2018 10:45-11:45 Lieu : Oratrice ou orateur : Krisztian Benyo Résumé :

Dans cet exposé, nous présentons de nouveaux résultats concernant un problème d’interaction fluide-structure. Nous considérons le problème de Cauchy pour l’équation des vagues dans le cas o๠le domaine occupé par le fluide est à  surface libre et avec un fond plat sur lequel un objet solide se translate horizontalement sous l’effet de la force de pression du fluide. Nous examinons deux systèmes asymptotiques décrivant le cas d’un fluide parfait incompressible en faible profondeur correspondant aux équations de Saint-Venant et de Boussinesq. Nous décrivons le système couplé dans ces deux régimes asymptotiques afin d’établir des résultats d’existence et d’unicité pour des données régulières (au sens de Sobolev). Afin de déterminer le mouvement du solide, une analyse précise des termes asymptotiquement singuliers induits par les forces de frottements est nécessaire.


On the minimal solution to some variational inequalities

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 janvier 2018 11:00-12:00 Lieu : Oratrice ou orateur : Michel Chipot Résumé :

Applying an asymptotic method, we will establish the existence of the minimal solution to some variational elliptic inequalities defined on bounded or unbounded domains. The minimal solution is obtained as limit of solutions to some classical variational inequalities defined on domains becoming unbounded when some parameter tends to infinity (joint work with S. Guesmia and S. Harkat)


How to solve problems with sign-changing coefficients

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 janvier 2018 10:45-11:45 Lieu : Oratrice ou orateur : Patrick Ciarlet Résumé :

This talk summarizes joint works by the speaker and Anne-Sophie BonnetBen Dhia, Lucas Chesnel, Camille Carvalho and Juan-Pablo Borthagaray on how to solve problems with discontinuous, sign-changing coefficients. In electromagnetic theory, the effective response of specifically designed materials is modeled by strictly negative coefficients: these are the so-called negative materials. Transmission problems with discontinuous, sign-changing coefficients then occur in the presence of negative materials surrounded by classical materials. For general geometries, establishing Fredholmness of these transmission problems is well-understood thanks to the T-coercivity approach [2]. Let $sigma$ be a parameter that is strictly positive in some part of the computational domain, and strictly negative elsewhere. We focus on the scalar source problem: find $u$ such that $mathrm{div}sigma nabla u – omega^2 u = f $ plus boundary condition, where $f$ is some data and $omega$ is the pulsation. Denoting by $sigma^+$ the strictly positive value, and by $sigma^-$ the strictly negative value, one can prove that there exists a critical interval $I_sigma$, such that the scalar source problem is well-posed in the Fredholm sense if, and only, if, the ratio $sigma^-/sigma^+$ lies outside the critical interval [2]. One may derive similar results for the related eigenvalue problem [4]. The shape of the interface separating the two materials must be taken into account to solve the problems numerically. For a plane interface, there exist meshing rules that guarantee an optimal convergence rate for the finite element approximation. We propose a new treatment at the corners of the interface which allows to design meshing rules for an arbitrary polygonal interface and then recover standard error estimates. This treatment relies on the use of simple geometrical transforms to define the meshes. Numerical results illustrate the importance of this new design [5, 1]. In a last part (time permitting), we discuss the extension of those results to nonlocal problems with discontinuous, sign-changing coefficients [3]. References : [1] A.-S. Bonnet-Ben Dhia, C. Carvalho, P. Ciarlet Jr., Mesh requirements for the finite element approximation of problems with sign-changing coefficients, Numer. Math. (To appear). [2] A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., T-coercivity for scalar interface problems between dielectrics and metamaterials, Math. Mod. Num. Anal., 46 (2012), pp. 1363–1387. [3] J.P. Borthagaray, P. Ciarlet Jr., Nonlocal models for interface problems between dielectrics and metamaterials, Proceedings of the Metamaterials’2017 Conference, Marseille, France, IEEE (To appear). [4] C. Carvalho, L. Chesnel, P. Ciarlet Jr., Eigenvalue problems with signchanging coefficients, C. R. Acad. Sci. Paris, Ser. I, 355 (2017), pp. 671– 675. [5] L. Chesnel, P. Ciarlet Jr., T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math., 124 (2013), pp. 1–29.


Schémas aux différences finies compacts pour résoudre l'équation de Poisson

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 janvier 2018 09:15-10:15 Lieu : Oratrice ou orateur : Erwan Deriaz Résumé :

Les différences finies compactes, introduites par Lothar Collatz dès 1951 produisent des schémas d’ordre élevé utiles dans certains domaines de la physique : mécanique des fluides, acoustique, chimie ab initio etc. Le calcul des coefficients de ces méthodes se fait grâce aux formules de Taylor mais peut aussi faire appel aux Approximants de Padé ou aux polynômes symétriques. Ces schémas appliqués à  l’équation de Poisson et associés à  des algorithmes multigrilles comptent parmi les meilleurs solveurs d’équations elliptiques.


Un modèle de MEMS avec contraintes

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 12 janvier 2018 11:00-12:00 Lieu : Oratrice ou orateur : Philippe Laurençot Résumé :

On étudie une inéquation variationnelle parabolique décrivant la dynamique d’un microsystème électromécanique (MEMS) et résultant de la prise en compte de l’hétérogénéité diélectrique du dispositif. J’esquisserai tout d’abord la provenance du modèle étudié puis décrirai les résultats obtenus pour les problèmes stationnaire et d’évolution. Travaux en commun avec Christoph Walker (Hannover).