Séminaires

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Exposés à venir

Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Archives

Separable cubic modeling in optimization

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 juin 2017 10:45-11:45 Lieu : Oratrice ou orateur : Marcos Raydan Résumé :

Résumé


Un résultat de type Bernstein pour l'équation des surfaces minimales

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 juin 2017 10:45-11:45 Lieu : Oratrice ou orateur : Alberto Farina Résumé :

Résumé


Homogenized models for diffusion processes in composite media with imperfect interfaces

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 2 juin 2017 11:00-12:00 Lieu : Oratrice ou orateur : Claudia Timofte Résumé :

In this talk, we shall present some homogenization results, obtained via the periodic unfolding method, for thermal diffusion problems in a highly heterogeneous periodic composite material formed by two constituents, separated by an imperfect interface where the temperature and the flux exhibit jumps. Depending on the geometry of the composite medium, on the properties of its two constituents and on the magnitude of the jump of the solution and of the flux across the imperfect interface, various types of problems arise at the macroscale. These problems capture in various ways the influence of the jumps: in the effective coefficients, in the right-hand side of the homogenized problem, and in the correctors, as well. Joint work with Renata Bunoiu (Université de Lorraine – Metz, France)


Sur les solutions localement minimisantes de Ginzburg-Landau dans R^3

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 mai 2017 10:45-11:45 Lieu : Oratrice ou orateur : Etienne Sandier Résumé :

Nous montrons avec I.Shafrir qu’une solution localement minimisante non constante de $R^3$ à  valeurs dans $R^2$ de l’équation de Ginzburg-Landau a une énergie qui croît au moins comme celle du filament de vorticité. Nous conjecturons d’ailleurs que le filament de vorticité est l’unique solution localement minimisante.


Des EDP physiologiquement structurées pour représenter la résistance aux traitements du cancer et optimiser les stratégies thérapeutiques anticancéreuses

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 mai 2017 10:45-11:45 Lieu : Oratrice ou orateur : Jean Clairambault Résumé :

Résumé


Application d'une méthode de points intérieurs à  la programmation semi définie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 mai 2017 09:15-10:15 Lieu : Oratrice ou orateur : Jean-Rodolphe Roche Résumé :

Résumé


Avancées récentes dans la simulation diphasique utilisant les méthodes de Volume de Fluid (VOF)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 mai 2017 10:45-11:45 Lieu : Oratrice ou orateur : Stéphane Zaleski Résumé :

Résumé


Homogenization of the brush problem with a source term in L1

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 12 mai 2017 11:00-12:00 Lieu : Oratrice ou orateur : Antonio Gaudiello Résumé :

We consider a domain which has the form of a brush in 3D or the form of a comb in 2D, i.e. an open set which is composed of cylindrical vertical teeth distributed over a fixed basis. All the teeth have a similar fixed height; their cross sections can vary from one teeth to another one and are not supposed to be smooth; moreover the teeth can be adjacent, i.e. they can share parts of their boundaries. The diameter of every tooth is supposed to be less than or equal to epsilon, and the asymptotic volume fraction of the teeth (as epsilon tends to zero) is supposed to be bounded from below away from zero, but no periodicity is assumed on the distribution of the teeth. In this domain we study the asymptotic behavior, as epsilon tends to zero, of the solution of a second order elliptic equation with a zeroth order term which is bounded from below away from zero, when the homogeneous Neumann boundary condition is imposed on the whole of the boundary. First, we revisit the problem where the source term belongs to L2. This is a classical problem, but our homogenization result takes place in a geometry which is more general that the ones which have been considered before. Moreover we prove a corrector result which is new. Then, we study the case where the source term belongs to L1. Working in the framework of renormalized solutions and introducing a definition of renormalized solutions for degenerate elliptic equations where only the vertical derivative is involved (such a definition is new), we identify the limit problem and prove a corrector result. This is joint work with Olivier Guibé (Université de Rouen, France) and Francois Murat (CNRS, Université Pierre et Marie Curie, Paris VI, France).


Studying the spread of evolving diseases : traveling waves and pulsating fronts

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 mai 2017 10:45-11:45 Lieu : Oratrice ou orateur : Quentin Griette Résumé :

Résumé


Approximation de problèmes biharmoniques: analyse numérique pour des schémas hermitiens

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 2 mai 2017 10:45-11:45 Lieu : Oratrice ou orateur : Jean-Pierre Croisille Résumé :

Résumé