Séminaires d’équations aux dérivées partielles à Metz et Nancy
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).
Exposés à venir
Controllability of some wave equations
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.
Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).
En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.
Hugo Parada (Université de Toulouse)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :Dominik Stantejsky
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :TBA
Lorenzo Lamberti (IECL)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :Dominik Stantejsky
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :TBA
Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.
Travail en collaboration avec Hannes Kern (TU Berlin).
Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Ngoc Nhi Nguyen (Université de Milan)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Idriss Mazari (Université Paris-Dauphine)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :Raphaël Côte (Université de Strasbourg)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :Didier Bresch (Université de Savoie)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :Pierre Rouchon (Mines Paris)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :Archives
Propriétés de (anti)symetrisation pour les équations de Fisher-KPP
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 octobre 2016 10:45-11:45 Lieu : Oratrice ou orateur : Luca Rossi Résumé :Résumé
Quelques aspects des équations de Kuramoto-Sivashinsky
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 7 octobre 2016 11:00-12:00 Lieu : Oratrice ou orateur : Saïd Benachour Résumé :Absence of critical points of solutions to the Helmholtz equation in 3D
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 4 octobre 2016 10:45-11:45 Lieu : Oratrice ou orateur : Giovanni Alberti Résumé :Résumé
Dynamique des populations
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 septembre 2016 09:15-10:15 Lieu : Oratrice ou orateur : Takéo Takahashi Résumé :Résumé
Opérateurs de Schrödinger presque homogènes
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 septembre 2016 11:00-12:00 Lieu : Oratrice ou orateur : Serge Richard Résumé :Durant ce séminaire nous considérerons une famille dâopérateurs de Schrödinger étant formellement homogènes sous le groupe des dilatations. Une fois mieux définis la majorité de ces opérateurs perdent cette propriété. Nous étudierons alors les propriétés spectrales de ces opérateurs, qui ne sont généralement pas auto-adjoints et proposerons certaines formules pour la théorie de la diffusion. Cette étude est intimement liée aux fonctions de Bessel, et certaines de leurs relations peuvent être réinterprétées dans le cadre de lâétude de ces opérateurs.
Classification des singularités isolées de solution positive de l'équation de Choquard
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 24 juin 2016 14:00-15:00 Lieu : Oratrice ou orateur : Feng Zhou Résumé :Résumé
Higher order Elliptic problems with Critical Sobolev Growth on a compact Riemannian Manifold: Best constants and existence.
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 17 juin 2016 14:00-15:00 Lieu : Oratrice ou orateur : Saikat Mazumdar Résumé :We investigate the existence of solutions to a nonlinear elliptic problem involving the critical Sobolev exponent for a Polyharmomic operator on a Riemannian manifold   M. We first show that the best constant of the Sobolev embedding on a manifold can be chosen as close as one wants to the Euclidean one, and as a consequence derive the existence of minimizers when the energy functional goes below a quantified threshold. Next, higher energy solutions are obtained by Coron’s topological method, provided that the minimizing solution does not exist and the manifold satisfies a certain topological assumption. To perform the topological argument, we obtain a decomposition of Palais-Smale sequences as a sum of bubbles and adapt Lions’s concentration-compactness lemma.
General decay in viscoelasticity: A recent development
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 juin 2016 14:00-15:00 Lieu : Oratrice ou orateur : Salim Messaoudi Résumé :In this talk we discuss a viscoelastic equation with a non increasing function. We first give an account of the existing results and then establish a new general decay rate for the solution energy of the problem under a more general condition on the relaxation function. This work answers some questions raised in the literature and generalizes and improves earlier results.
Valeurs propres des problèmes à bord dissiptifs
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 3 juin 2016 14:00-15:00 Lieu : Oratrice ou orateur : Vasselin Petkov Résumé :On éudie la localisation et l’existence des valeurs propres (v. p.) du générateur d’un semi-groupe de contraction associé aux problèmes à bord dissipatifs pour l’équation des ondes et le système de Maxwell. Le spectre du générateur dans le demi-plan gauche est formé par des v. p. isolées de multiplicité finie et les solutions associées ont une énergie globale exponentiellement décroissante. La localisation des v. p. est importante pour les applications et les problèmes inverses de diffusion. On prouve que les v. p. sont localisées dans des voisinages paraboliques de l’axe réel ou de l’axe imaginaire. Pour des obstacles strictement convexes on obtient des résultats plus précis. Finalement pour la balle on établit l’existence d’un nombre infini de v. p. réelles négatives.
Contrôlabilité d'une famille d'équations paraboliques dégénérées
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 27 mai 2016 14:00-15:00 Lieu : Oratrice ou orateur : Patrick Martinez Résumé :Résumé