Séminaires

Séminaires d’équations aux dérivées partielles à Metz et Nancy

Les séminaires ont lieu
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy

Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).

Exposés à venir

Controllability of some wave equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :

In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.


Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 novembre 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :

La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).

En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Dominik Stantejsky

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

TBA


Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Camille Labourie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :

TBA


Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 janvier 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 février 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Archives

Analyse asymptotique d'un problème de Neumann dans un domaine avec point de rebroussement: application au problème des collisions de solides dans un fluide

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 20 janvier 2017 11:00-12:00 Lieu : Oratrice ou orateur : Alexandre Munnier Résumé :

Dans ce travail, nous étudions un problàƒÂ¨me de collision entre un solide rigide immergé et la paroi de la cavité dans laquelle il se trouve. Nous sommes amenés àƒÂ  considérer le comportement asymptotique de la solution d’un problàƒÂ¨me de Neumann (et de l’énergie de Dirichlet associée) lorsque le domaine devient singulier (apparition d’un point de rebroussement). Conformément àƒÂ  l’intuition que l’on peut avoir, le comportement diffàƒÂ¨re suivant le profil du solide (plus ou moins « aplati » au niveau du point de contact).


Titre à  préciser

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 janvier 2017 11:00-12:00 Lieu : Oratrice ou orateur : Nicolas Popoff Résumé :

Résumé à  préciser


Sur l'équation des ondes dans les domaines fracturés

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 décembre 2016 11:00-12:00 Lieu : Oratrice ou orateur : Ilaria Lucardesi Résumé :

Dans cet exposé je vous présenterai des résultats récents, en collaboration avec G. Dal Maso, concernant un problème de propagation dynamique de fractures. Dans le cas anti-plan, lorsque la fissure croît sur une variété prescrite et régulière, on démontre existence, unicité, et dépendance continue par rapport aux données de la fonction déplacement.


Inégalites de Sobolev logarithmiques et équations de dérive-diffusion

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 décembre 2016 10:45-11:45 Lieu : Oratrice ou orateur : François Bolley Résumé :

Résumé


Sur le lemme de Lions et ses relations avec d'autres théorèmes d'analyse fonctionnelle

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 2 décembre 2016 11:00-12:00 Lieu : Oratrice ou orateur : Cristinel Mardare Résumé :

A finite volume scheme for a first order conservation law involving a Q-brownian motion

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 29 novembre 2016 10:45-11:45 Lieu : Oratrice ou orateur : Yueyuan Gao Résumé :

Résumé


Mesures quasi-invariantes pour des EDP hamiltoniennes

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 22 novembre 2016 10:45-11:45 Lieu : Oratrice ou orateur : Nikolay Tzvetkov Résumé :

Résumé


Un modèle de dynamique des populations piloté par capacité biotique

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 4 novembre 2016 11:00-12:00 Lieu : Oratrice ou orateur : Léonard Monsaingeon Résumé :

Dans cet exposé je présenterai un modèle de dynamique des populations piloté par capacité biotique. La capacité biotique $f=rho-m$, qui est essentiellement la différence entre la densité d’espèce $rho(t,x)$ et la quantitié de ressources disponibles $m(x)$, intervient comme un terme de reproduction logistique, mais affecte également la dispersion de l’espèce qui se déplace vers l’environnement le plus favorable possible ($f>0$). Le modèle a été introduit et étudié mathématiquement par [Cosner et Winkler], et consiste en un problème parabolique dégénéré. Dans une série de travaux récents, nous avons montré avec S. Kondratyev et D. Vorotnikov (Univ. Coimbra, Portugal) que le modèle peut s’écrire comme un flot gradient dans l’espace des mesures, muni d’une nouvelle distance de transport optimal non conservatif. Ce point de vue revisité permet d’établir un nouveau résultat de convergence en temps long, dont la preuve est basée sur des techniques d’entropie/dissipation-entropie particulièrement adaptées au cadre variationnel et en lien avec une nouvelle famille d’inégalités fonctionnelles. Si le temps le permet je présenterai une extension au cas vectoriel.


Sur la dynamique des structures flottantes

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 octobre 2016 10:45-11:45 Lieu : Oratrice ou orateur : David Lannes Résumé :

Résumé


Front d'onde des états "in" et "out" pour champs de Klein-Gordon sur espaces-temps asymptotiquement statiques

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 octobre 2016 11:00-12:00 Lieu : Oratrice ou orateur : Michal Wrochna Résumé :

En théorie des champs relativiste, un problème essentiel est de séparer les solutions de l’équation de Klein-Gordon en celles qui propagent avec fréquences positives et celles a fréquences négatives, dans le sens précis d’une condition sur leur front d’onde. Sur des espace-temps asymptotiquement statiques, il existe une construction bien connue (par théorie de diffusion) qui donne une décomposition canonique, mais jusqu’à  présent le problème de vérifier la condition sur le front d’onde, dite « de Hadamard », restait ouvert. Le but de cet expose seront des démontrer cette conjecture dans le cas à  longue portée en utilisant un mélange de théorie de diffusion et de calcul pseudo-différentiel. Je vais aussi expliquer comment dans ce cadre est-il possible de définir des conditions asymptotiques pour lesquelles l’opérateur de Klein-Gordon devient un opérateur de Fredholm vérifiant des propriétés étonnamment similaires au cas elliptique (travail en collaboration avec Christian Gérard).