Exposés à venir
Séminaires d’équations aux dérivées partielles à Metz et Nancy
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Viviana Grasselli (Metz), Camille Labourie (Nancy), Dominik Stantejsky (Nancy) et Alessandro Duca (Nancy).
Séminaire: Convection-dominated transport problems in thin graph-like networks
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel’nyk Résumé :The lecture addresses time‑dependent convection–diffusion problems with high Péclet number in thin 3D graph‑like networks of curvilinear cylinders connected by nodes of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Robin boundary conditions with different intensity factors are imposed on the network boundary. As $\varepsilon \rightarrow 0,$ the network collapses to a graph and the diffusion terms vanish.
Such problems pose singular‑perturbation challenges that standard methods often cannot resolve. I present a systematic asymptotic framework for $\varepsilon \rightarrow 0,$ combining regular expansions on edges with node‑layer and boundary‑layer asymptotics to capture the multiscale flow structure. The analysis justifies reduced graph models, quantifies higher‑order corrections, and uncovers new phenomena in singular regimes.
Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement
Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 décembre 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives
Régularité d'un problème à frontière libre d'ordre 4
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 décembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.
C’est un travail en collaboration avec Jimmy Lamboley.
Séminaire: titre à venir
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :Résumé à venir
Romeo LEYLEKIAN
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :Laure GIOVANGIGLI
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :Lucas COEURET
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :Marc PEGON
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :Nicolas VANSPRANGHE
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :Benoit MERLET
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :Camille LAURENT
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :Archives
Comportement des solutions d'équations de Hamilton-Jacobi diffusives
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Philippe Souplet Résumé :Dans cet exposé, je passerai en revue un certain nombre de résultats récents sur les équations de Hamilton-Jacobi diffusives, de la forme $u_t-Delta u=|nabla u|^p+h(x)$. Ce type d’équations, qui interviennent en théorie du contrôle stochastique, mais aussi dans certains modèles de croissance de surface, donnent lieu à une variété de comportements intéressant. Nous nous intéresserons en particulier à deux classes de phénomènes: – Explosion du gradient: localisation des singularités au bord, explosion en seul point, vitesses d’explosion, profils en espace, estimations de type Bernstein, théorèmes de type Liouville et applications; – Continuation au sens de viscosité après l’explosion du gradient: solutions avec ou sans perte de conditions au bord, récupération des conditions au bord, régularisation.
Laplaciens Fractionnaires dans un ouvert borné
Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 novembre 2019 09:15-10:15 Lieu : Oratrice ou orateur : Maha Daoud Résumé :Dans cet exposé, nous allons rappeler deux ou trois définitions du Laplacien fractionnaire dans $R^N$ qui sont toutes équivalentes. Puis nous montrons que chacune des définitions donne un « Laplacien fractionnaire » dans le cas d’un domaine ouvert borné de $R^N$. Enfin, nous présentons des simulations numériques pour illustrer la différence entre les « Laplaciens fractionnaires » les plus étudiés dans la littérature.
Quelques résultats de non-unicité pour le problème de Calderon anisotrope
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 22 novembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : François Nicoleau Résumé :Le résumé se trouve ici
A multiscale approach to reaction-diffusion processes and elasticity in domains with microstructure
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 15 novembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Malte PETER Résumé :Reaction-diffusion processes occur in many materials with microstructure such as biological cells, steel or concrete. The main difficulty in modelling and simulating accurately such processes is to account for the fine microstructure of the material. One method of upscaling multiscale problems, which has proven reliable for obtaining feasible macroscopic models rigorously, is the method of periodic homogenisation. The correct scaling of certain terms of the system with powers of the homogenisation parameter is an aspect particularly relevant in this context. The scaling arises from geometrical considerations or from the processes themselves. Depending on the particular choice of these scaling powers, different limit behaviours are obtained leading to different systems of equations in the homogenisation limit. This will first be discussed in the context of a reaction-diffusion system given in a two-component medium coupled by a Robin condition at the internal interface. The analogous vector-valued problem models two elastic materials coupled by a slip-displacement condition, which will be the focus of the second part of the talk.
Nappes de tourbillon-courant en magnétohydrodynamique
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 novembre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Jean-François Coulombel Résumé :On construit des solutions (approchées à tout ordre) hautement oscillantes du problème des nappes de tourbillon-courant en magnétohydrodynamique incompressible. Il s’agit d’un travail en collaboration avec Olivier Pierre.
Quelques résultats de contrôle pour l'équation de KdV
Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 novembre 2019 09:15-10:15 Lieu : Oratrice ou orateur : JULIE VALEIN Résumé :Résumé
Quelques liens entre la contrôlabilité et l'intégrabilité
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 8 novembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Ludovick Gagnon Résumé :L’objectif de cet exposé est de présenter des questions ouvertes en théorie du contrôle, et plus spécifiquement des questions de contrôlabilité en temps arbitrairement petit d’équations aux dérivées partielles non linéaires. Nous ferons un survol des récents résultats obtenus avec la méthode du retour pour l’équation de Navier-Stokes et expliquerons les difficultés liées à l’application de cette méthode à d’autres EDP non linéaires. Nous introduirons ensuite le concept d’intégrabilité de systèmes dynamiques (EDO ou EDP) et nous présenterons une application à la contrôlabilité
Maximisation de la population totale par placement optimal des ressources pour le modèle de Fisher KPP
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 novembre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Grégoire Nadin Résumé :Dans cet exposé je reviendrai sur des travaux récents en optimisation pour l’équation de Fisher-KPP. Cette équation est fréquemment utilisée en écologie afin de modéliser l’évolution d’une population dans un environnement hétérogène. Plusieurs travaux ont ces dernières années étudié comment optimiser une valeur propre dont le signe caractérise la survie ou l’extinction de cette population, en fonction du taux de croissance. Dans un travail commun avec Idriss Mazari et Yannick Privat, nous avons optimisé une autre quantité : la population totale à l’équilibre. Les résultats sont plus contrastés pour cette quantité et dépendent du taux de diffusion de la population.
Equations de Lotka-Volterra avec diffusion croisée
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 octobre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Laurent Desvillettes Résumé :La théorie des systèmes de réaction-diffusion de type Lotka-Volterra s’enrichit singulièrement lorsque l’on insère des termes de diffusion croisée, avec en particulier l’apparition de patterns. On discutera l’intérêt de l’apparition de ces termes, les difficultés mathématiques qu’ils engendrent, et les conclusions que l’on peut tirer de leur utilisation en terme de modélisation.
Scattering non-linéaire pour des EDP posées sur des espaces produits
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 8 octobre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Lysianne Hari Résumé :Dans cet exposé, nous nous intéresserons au phénomène de « scattering » pour certaines EDPs dispersives non-linéaires : il s’agira de « comparer » la solution non-linéaire (lorsqu’elle existe globalement) à des solutions du problèmes linéaire lorsque le temps devient grand. Nous rappellerons d’abord les résultats connus sur R^d, à savoir que sous certaines conditions sur la non-linéarité, on peut effectivement comparer, en temps longs, la solution non-linéaire à des solutions linéaires. Ce résultat est dà» à un bon contrôle de la solution non-linéaire. Nous verrons aussi que des résultats similaires dans le cadre d’une variété riemannienne compacte M^k n’ont pas lieu d’être. La question à laquelle on tâchera de répondre (au moins partiellement) est donc la suivante : si on se place sur un espace produit de type R^d times M^k, quel est le comportement dominant ? Peut-on espérer avoir du « scattering » en faisant vivre seulement une partie des variables spatiales dans R^d ? Autrement dit : un contrôle « partiel » de la solution peut-il suffire à obtenir du « scattering » ? Nous verrons quelles sont les conditions naturelles sur la non-linéarité pour espérer des résultats de type « scattering » dans un espace produit et donnerons des idées de preuve pour la partie « technique » du résultat. Nous commencerons par les équations de Schrödinger qui ont été les premières à être étudiées dans ce cadre puis nous tâcherons d’exhiber le même type de comportement pour les équations de Klein-Gordon.