Exposés à venir
Séminaires d’équations aux dérivées partielles à Metz et Nancy
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Viviana Grasselli (Metz), Camille Labourie (Nancy), Dominik Stantejsky (Nancy) et Alessandro Duca (Nancy).
Séminaire: Convection-dominated transport problems in thin graph-like networks
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel’nyk Résumé :The lecture addresses time‑dependent convection–diffusion problems with high Péclet number in thin 3D graph‑like networks of curvilinear cylinders connected by nodes of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Robin boundary conditions with different intensity factors are imposed on the network boundary. As $\varepsilon \rightarrow 0,$ the network collapses to a graph and the diffusion terms vanish.
Such problems pose singular‑perturbation challenges that standard methods often cannot resolve. I present a systematic asymptotic framework for $\varepsilon \rightarrow 0,$ combining regular expansions on edges with node‑layer and boundary‑layer asymptotics to capture the multiscale flow structure. The analysis justifies reduced graph models, quantifies higher‑order corrections, and uncovers new phenomena in singular regimes.
Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement
Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 décembre 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives
Régularité d'un problème à frontière libre d'ordre 4
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 décembre 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.
C’est un travail en collaboration avec Jimmy Lamboley.
Séminaire: titre à venir
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 décembre 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :Résumé à venir
Romeo LEYLEKIAN
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :Laure GIOVANGIGLI
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :Lucas COEURET
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :Marc PEGON
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 janvier 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :Nicolas VANSPRANGHE
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :Benoit MERLET
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :Camille LAURENT
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 février 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :Archives
Singular limit for reactive diffusive transport through an array of thin channels in case of critical diffusivity
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 octobre 2020 11:00-12:00 Lieu : Oratrice ou orateur : Maria Neuss-Radu Résumé :We consider a nonlinear reaction–diffusion equation in a domain consisting of two bulk regions connected via small channels periodically distributed within a thin layer. The height and the thickness of the channels are of order $epsilon$, and the equation inside the layer depends on the parameter $epsilon$. We consider the critical scaling of the diffusion coefficients in the channels and nonlinear Neumann-boundary condition on the channels’ lateral boundaries. We derive effective models in the limit $epsilon to 0 $, when the channel-domain is replaced by an interface $Sigma$ between the two bulk-domains. Due to the critical size of the diffusion coefficients, we obtain jumps for the solution and its normal fluxes across $Sigma$, involving the solutions of local cell problems on the reference channel in every point of the interface $Sigma$. This is a joint work with Markus Gahn (University of Heidelberg)
Existence globale pour une classe de systèmes de réaction-diffusion avec des données initiales peu régulières
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 octobre 2020 10:45-11:45 Lieu : Oratrice ou orateur : El Haj Laamri Résumé :Durant les 40 dernières années, des efforts considérables ont été consacrées à l’étude des systèmes de réaction-diffusion avec des données initiales bornées ou de carré intégrable, et avec des non-linéarités au plus quadratiques. En revanche, on en sait relativement peu dans le cas o๠les données initiales sont de faible régularité et les non-linéarités sont à croissance super-quadratique. Dans cet exposé, nous présentons une nouvelle estimation a priori avec des données initiales dans L1 qui étend l’estimation a priori L2 de Michel Pierre. Ensuite, nous expliquons comment cette estimation a priori L1 nous permet : de simplifier la preuve de certains résultats récents ; d’établir de nouveaux résultats d’existence pour des systèmes o๠les non-linéarités sont super-quadratiques. L’exposé repose sur un travail récent avec Benoit Perthame et sur un papier avec Michel Pierre.
EDP sur domaines polyédriques
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 9 octobre 2020 11:00-12:00 Lieu : Oratrice ou orateur : Victor Nistor Résumé :Cet expose sera une introduction aux quelques résultats basiques pour les équations aux dérivées partielles sur domaine polyédrique. Par exemple, il est bien connu due aux travaux de Costabel, Dauge, Kondratiev, Mazya, Nicaise et d’autres que les solutions des équations elliptiques sur domaines non lisses souffrent d’une « perte de régularité. » Une question naturelle est qu’est-ce qu’on peut faire pour soulager ce problème, qui cause des ennuis pour les méthodes numériques. Les résultats que je vais exposer aident à résoudre certains aspects de ce problème. L’exposé sera assez informel et basique.
Liouville type results for a nonlocal obstacle problem
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 mars 2020 10:45-11:45 Lieu : Oratrice ou orateur : Julien Brasseur Résumé :My talk will be devoted to the qualitative properties of some nonlocal reaction-diffusion equations set on “perforated » open sets. One of the cornerstones in the study of this type of problem lies in suitable rigidity results of Liouville-type, which allow the classification of stationary solutions. I will give some results in this direction, under some geometric assumptions on the domain. This talk is based on some joint works with J. Coville, F. Hamel and E. Valdinoci.
Long time existence for small solutions of Hamiltonian or reversible quasilinear equations on the circle.
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 mars 2020 10:45-11:45 Lieu : Oratrice ou orateur : Felice Iandoli Résumé :I will present some recent results obtained in collaboration with Roberto Feola. I shall prove that small solutions of quasilinear equations on the circle exist for long time (depending on the size of the initial condition) if the equation enjoys an algebraic structure. In this directions I will consider the Hamiltonian or reversible equations. The main difficulties are the lack of dispersion, due to the compactness of the circle, and the lack of “easy†energy estimates due to the quasi-linear nature the considered equations.
Contrôle optimal de ressources pour la survie des espèces
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 28 février 2020 11:00-12:00 Lieu : Oratrice ou orateur : Yannick Privat Résumé :Dans ce travail, on s’intéresse à des configurations optimales de ressources (typiquement des denrées alimentaires) nécessaires à la survie d’une espèce, dans un espace fermé. A cette fin, nous utilisons un modèle dit logistique pour décrire l’évolution de la densité d’individus constituant cette population. Cette équation fait intervenir une fonction représentant la répartition hétérogène (en espace) des ressources. La question principale traitée dans cet exposé peut se formuler ainsi : comment répartir de façon optimale des ressources dans un habitat ? Cette question peut se reformuler comme un problème de contrôle optimal ou d’optimisation de forme, dans lequel on cherche à optimiser un critère mettant en jeu la valeur propre principale d’un opérateur par rapport au domaine occupé par les ressources ou encore une fonction de la densité de population dépendant implicitement d’un terme de ressources. Nous présenterons dans cet exposé de nouveaux résultats complétant une analyse ancienne de ces problèmes, ainsi que de nombreuses propriétés qualitatives.
On Schrödinger operators with complex potentials
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 février 2020 11:00-12:00 Lieu : Oratrice ou orateur : Jan Derezinski Résumé :We are used to self-adjoint Schrödinger operators with real potentials. In my talk I will try to convince you that the theory of 1 dimensional Schrödinger operators with complex potentials is very similar to the real case. For instance, the theory of their boundary value problem, formulas for their resolvents, etc. are essentially the same. The proofs are, however, often more difficult and one has to change the basic philosophy. For example, the concept of the self-adjointness should be replaced by the self-transposedness (called also the J-self-adjointness).
Équation des ondes non-linéaires stochastiques en dimension 2.
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 février 2020 10:45-11:45 Lieu : Oratrice ou orateur : Tristan Robert Résumé :Dans cet exposé, on considère l’équation des ondes amorties non-linéaires sur le tore de dimension 2, en présence d’un terme source stochastique donné par un bruit blanc espace-temps. On expliquera pourquoi la faible régularité du bruit impose de recourir à une procédure de renormalisation afin d’obtenir une dynamique non triviale. Le cas d’une non-linéarité polynomiale est maintenant bien compris, et on se concentrera sur deux cas particuliers de non-linéarité non polynomiale donnés par le modèle de sine-Gordon et le modèle exp(Phi)_2 hyperbolique.
Sur la convergence ponctuelle de l'équation de Schrodinger non-linéaire.
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 4 février 2020 10:45-11:45 Lieu : Oratrice ou orateur : Renato Luca Résumé :On considère l’équation de Schrodinger non-linéaire avec des non-linéarités polynomiales et des données initiales dans les espaces de Sobolev H^s. La question est de trouver la régularité s > 0 minimale telle qu’on a convergence ponctuelle des solutions aux données initiales. On étend les résultats linéaires au cas non-linéaire et on prouve des résultats plus fins pour des données initiales aléatoires.
Inégalités de Strichartz pour l'équation de Schrödinger
Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 4 février 2020 09:15-10:15 Lieu : Oratrice ou orateur : Laurent Thomann Résumé :Résumé