Exposés à venir
Séminaires d’équations aux dérivées partielles à Metz et Nancy
– le vendredi de 11h à 12h, Salle de séminaires, IECL – site de Metz
– le mardi de 10h45 à 11h45, Salle de conférence, IECL – site de Nancy
Les organisateurs des séminaires sont : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Tristan Robert (Nancy) et Alessandro Duca (Nancy).
Ruikang Liang (LJLL)
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ruikang Liang (LJLL) Résumé :Anne-Sophie de Suzzoni (Polytechnique)
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne-Sophie de Suzzoni (Polytechnique) Résumé :Groupe de travail : Well-posedness and stability results for thermoelastic Bresse and Timoshenko type systems with Gurtin-Pipkin's law through the vertical displacements
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 23 mai 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Aissa Guesmia (IECL) Résumé :The main objective of this work is to study the stability of a linear one-dimensional thermoelastic Bresse system in a bounded domain, where the coupling is given through the first component of the Bresse model with the heat conduction of Gurtin-Pipkin type. Two kinds of coupling are considered; the first coupling is of order one with respect to space variable, and the second one is of order zero. We state the well-posedness and show the polynomial and strong stability of the systems for regular and weak solutions, respectively, where the polynomial decay rates depend on the smoothness of the initial data. Moreover, in case of coupling of order one, we prove the equivalence between the exponential stability and some new conditions on the parameters of the system. However, when the coupling is of order zero, we prove the non-exponential stability independently of the parameters of the system. Applications to the corresponding particular Timoshenko models are also given, where we prove that both couplings lead to the exponential stability if and only if some conditions on the parameters of the systems are satisfied, and both couplings guarantee the polynomial and strong stability for regular and weak solutions, respectively, independently of the parameters of the systems. The proof of the well-posedness result is based on the semigroups theory, whereas a combination of the energy method and the frequency domain approach is used for the proof of the stability results.
For the details, see the following paper:
A. Guesmia, Well-posedness and stability results for thermoelastic Bresse and Timoshenko type systems with Gurtin-Pipkin’s law through the vertical displacements, SeMa J., (2023), 1-49.
Jérôme Le Rousseau (Université Paris Nord)
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 mai 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :Groupe de travail : auchy systems of type Rao-Nakra sandwich beam with frictional dampings or infinite memories: some -norm polynomial stability estimates ( )
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz)
Date/heure : 6 juin 2025 11:00-12:00
Lieu : Salle de séminaires Metz
Oratrice ou orateur : Aissa Guesmia (IECL)
Résumé : The objective of this work is to study the stability of two systems of type Rao-Nakra sandwich beam in the whole line
A part of these results was obtained in collaboration with Salim Messaoudi (University of Sharjah, UAE).
For the details, see the following papers:
A. Guesmia, Some
A. Guesmia, On the stability of a linear Cauchy Rao-Nakra sandwich beam under frictional dampings, Taiwanese J. Math., 27 (2023), 799-811.
A. Guesmia and S. Messaoudi, Some
Karol Bołbotowski (Université de Varsovie)
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Karol Bołbotowski (Université de Varsovie) Résumé :Viet Dang Nguyen (Université de Strasbourg)
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Viet Dang Nguyen (Université de Strasbourg) Résumé :Xavier Lamy (Université de Toulouse)
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 juin 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Lamy (Université de Toulouse) Résumé :Archives
A multiscale approach to reaction-diffusion processes and elasticity in domains with microstructure
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 15 novembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Malte PETER Résumé :Reaction-diffusion processes occur in many materials with microstructure such as biological cells, steel or concrete. The main difficulty in modelling and simulating accurately such processes is to account for the fine microstructure of the material. One method of upscaling multiscale problems, which has proven reliable for obtaining feasible macroscopic models rigorously, is the method of periodic homogenisation. The correct scaling of certain terms of the system with powers of the homogenisation parameter is an aspect particularly relevant in this context. The scaling arises from geometrical considerations or from the processes themselves. Depending on the particular choice of these scaling powers, different limit behaviours are obtained leading to different systems of equations in the homogenisation limit. This will first be discussed in the context of a reaction-diffusion system given in a two-component medium coupled by a Robin condition at the internal interface. The analogous vector-valued problem models two elastic materials coupled by a slip-displacement condition, which will be the focus of the second part of the talk.
Nappes de tourbillon-courant en magnétohydrodynamique
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 novembre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Jean-François Coulombel Résumé :On construit des solutions (approchées à tout ordre) hautement oscillantes du problème des nappes de tourbillon-courant en magnétohydrodynamique incompressible. Il s’agit d’un travail en collaboration avec Olivier Pierre.
Quelques résultats de contrôle pour l'équation de KdV
Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 novembre 2019 09:15-10:15 Lieu : Oratrice ou orateur : JULIE VALEIN Résumé :Résumé
Quelques liens entre la contrôlabilité et l'intégrabilité
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 8 novembre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Ludovick Gagnon Résumé :L’objectif de cet exposé est de présenter des questions ouvertes en théorie du contrôle, et plus spécifiquement des questions de contrôlabilité en temps arbitrairement petit d’équations aux dérivées partielles non linéaires. Nous ferons un survol des récents résultats obtenus avec la méthode du retour pour l’équation de Navier-Stokes et expliquerons les difficultés liées à l’application de cette méthode à d’autres EDP non linéaires. Nous introduirons ensuite le concept d’intégrabilité de systèmes dynamiques (EDO ou EDP) et nous présenterons une application à la contrôlabilité
Maximisation de la population totale par placement optimal des ressources pour le modèle de Fisher KPP
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 novembre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Grégoire Nadin Résumé :Dans cet exposé je reviendrai sur des travaux récents en optimisation pour l’équation de Fisher-KPP. Cette équation est fréquemment utilisée en écologie afin de modéliser l’évolution d’une population dans un environnement hétérogène. Plusieurs travaux ont ces dernières années étudié comment optimiser une valeur propre dont le signe caractérise la survie ou l’extinction de cette population, en fonction du taux de croissance. Dans un travail commun avec Idriss Mazari et Yannick Privat, nous avons optimisé une autre quantité : la population totale à l’équilibre. Les résultats sont plus contrastés pour cette quantité et dépendent du taux de diffusion de la population.
Equations de Lotka-Volterra avec diffusion croisée
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 octobre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Laurent Desvillettes Résumé :La théorie des systèmes de réaction-diffusion de type Lotka-Volterra s’enrichit singulièrement lorsque l’on insère des termes de diffusion croisée, avec en particulier l’apparition de patterns. On discutera l’intérêt de l’apparition de ces termes, les difficultés mathématiques qu’ils engendrent, et les conclusions que l’on peut tirer de leur utilisation en terme de modélisation.
Scattering non-linéaire pour des EDP posées sur des espaces produits
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 8 octobre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Lysianne Hari Résumé :Dans cet exposé, nous nous intéresserons au phénomène de « scattering » pour certaines EDPs dispersives non-linéaires : il s’agira de « comparer » la solution non-linéaire (lorsqu’elle existe globalement) à des solutions du problèmes linéaire lorsque le temps devient grand. Nous rappellerons d’abord les résultats connus sur R^d, à savoir que sous certaines conditions sur la non-linéarité, on peut effectivement comparer, en temps longs, la solution non-linéaire à des solutions linéaires. Ce résultat est dà» à un bon contrôle de la solution non-linéaire. Nous verrons aussi que des résultats similaires dans le cadre d’une variété riemannienne compacte M^k n’ont pas lieu d’être. La question à laquelle on tâchera de répondre (au moins partiellement) est donc la suivante : si on se place sur un espace produit de type R^d times M^k, quel est le comportement dominant ? Peut-on espérer avoir du « scattering » en faisant vivre seulement une partie des variables spatiales dans R^d ? Autrement dit : un contrôle « partiel » de la solution peut-il suffire à obtenir du « scattering » ? Nous verrons quelles sont les conditions naturelles sur la non-linéarité pour espérer des résultats de type « scattering » dans un espace produit et donnerons des idées de preuve pour la partie « technique » du résultat. Nous commencerons par les équations de Schrödinger qui ont été les premières à être étudiées dans ce cadre puis nous tâcherons d’exhiber le même type de comportement pour les équations de Klein-Gordon.
Systèmes quantiques dissipatifs : une introduction
Catégorie d’évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 4 octobre 2019 11:00-12:00 Lieu : Oratrice ou orateur : Jérémy Faupin Résumé :Résumé
Sur l'existence de solutions fortes d'un problème fluide-structure avec conditions de Navier.
Catégorie d’évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 octobre 2019 10:45-11:45 Lieu : Oratrice ou orateur : Imene Djebour Résumé :On considère un système d’interaction fluide-structure entre un fluide incompressible dans un domaine tridimensionnel et une plaque élastique localisée sur la partie supérieure du bord. Le fluide est gouverné par l’équation de Navier-Stokes et le mouvement de la structure est régit par l’équation des plaques avec damping. On munit notre système des conditions de Navier sur le bord. Notre principal objectif est d’étudier l’existence et l’unicité de solutions fortes associées à ce système.
Existence versus non existence de solutions globales d'EDP d'ordre m
Catégorie d’évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 octobre 2019 09:15-10:15 Lieu : Oratrice ou orateur : SAàD BENACHOUR Résumé :Résumé